IEEE Trans Cybern. 2019 Jun;49(6):2119-2132. doi: 10.1109/TCYB.2018.2820138. Epub 2018 Apr 16.
This paper investigates the output feedback model predictive control (OFMPC) for Takagi-Sugeno fuzzy networked control systems with bounded disturbance, where data quantization and data loss occur simultaneously. The quantization error is treated as sector bound uncertainties by using the sector bound approach and the data loss process is modeled as a time-homogeneous Markov chain. Invoking S -procedure and the notion of quadratic boundedness which can specify closed-loop stability for system with disturbance, the state observer is offline designed and the networked output feedback model predictive controller is provided which explicitly considers the satisfaction of input constraints. Two online synthesis algorithms of OFMPC are presented, one parameterizing the infinite horizon control moves into a single feedback law, the other into one free control move followed by the single feedback law based on the state observer. A new formula is introduced to refresh the ellipsoidal bound of estimation error which can guarantee the recursive feasibility of optimization problem. An example is given to demonstrate the effectiveness of the proposed new design techniques.
本文研究了具有界干扰的 Takagi-Sugeno 模糊网络控制系统的输出反馈模型预测控制 (OFMPC),其中同时发生数据量化和数据丢失。通过使用扇区界方法,量化误差被视为扇区界不确定性,并且数据丢失过程被建模为齐次马尔可夫链。利用 S-过程和二次有界性的概念,可以为具有干扰的系统指定闭环稳定性,离线设计状态观测器,并提供网络输出反馈模型预测控制器,该控制器明确考虑了输入约束的满足。提出了两种 OFMPC 的在线综合算法,一种将无限时域控制移动参数化为单个反馈律,另一种将基于状态观测器的单个自由控制移动后跟单个反馈律。引入了一个新公式来更新估计误差的椭球界,该界可以保证优化问题的递归可行性。给出了一个实例来说明所提出的新设计技术的有效性。