Suppr超能文献

基于神经网络的一类严格反馈切换非线性系统自适应有限时间容错控制

Neural Networks-Based Adaptive Finite-Time Fault-Tolerant Control for a Class of Strict-Feedback Switched Nonlinear Systems.

作者信息

Liu Lei, Liu Yan-Jun, Tong Shaocheng

出版信息

IEEE Trans Cybern. 2019 Jul;49(7):2536-2545. doi: 10.1109/TCYB.2018.2828308. Epub 2018 May 4.

Abstract

This paper concentrates upon the problem of finite-time fault-tolerant control for a class of switched nonlinear systems in lower-triangular form under arbitrary switching signals. Both loss of effectiveness and bias fault in actuator are taken into account. The method developed extends the traditional finite-time convergence from nonswitched lower-triangular nonlinear systems to switched version by designing appropriate controller and adaptive laws. In contrast to the previous results, it is the first time to handle the fault tolerant problem for switched system while the finite-time stability is also necessary. Meanwhile, there exist unknown internal dynamics in the switched system, which are identified by the radial basis function neural networks. It is proved that under the presented control strategy, the system output tracks the reference signal in the sense of finite-time stability. Finally, an illustrative simulation on a resistor-capacitor-inductor circuit is proposed to further demonstrate the effectiveness of the theoretical result.

摘要

本文主要研究一类下三角形式的切换非线性系统在任意切换信号下的有限时间容错控制问题。同时考虑了执行器的失效和偏差故障。通过设计合适的控制器和自适应律,所提出的方法将传统的有限时间收敛从非切换下三角非线性系统扩展到了切换系统。与先前的结果相比,这是首次在有限时间稳定性也必要的情况下处理切换系统的容错问题。同时,切换系统中存在未知的内部动态,通过径向基函数神经网络对其进行辨识。证明了在所提出的控制策略下,系统输出在有限时间稳定性意义下跟踪参考信号。最后,通过一个电阻-电容-电感电路的仿真示例进一步验证了理论结果的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验