Shen Jianbing, Peng Jianteng, Shao Ling
IEEE Trans Image Process. 2018 Jan 22. doi: 10.1109/TIP.2018.2795740.
We propose a new trajectory clustering method using submodular optimization for better motion segmentation in videos. A small number of representative trajectories are first selected by submodular maximization automatically. Then all the initial trajectories can be segmented into fragments with the representative trajectories as centers of fragments. At last, fragments are merged into clusters by a two-stage bottom-up clustering method, and each cluster shows the motion of one moving object. The submodular energy function integrates the quality of all trajectories and their correlations. As a result, thousands of initial trajectories are replaced by only dozens of representative trajectories, which will reduce the negative influence of inaccurate initial trajectories on motion segmentation. The representative trajectories will have larger weights while extracting color or texture information of each moving entity at the step of motion segmentation. Experimental results demonstrate that our method can divide trajectories into more accurate clusters. The final motion segmentation results also illustrate that our method outperforms state-of-the-art motion segmentation methods based on trajectory clustering.
我们提出了一种新的轨迹聚类方法,该方法使用次模优化来在视频中实现更好的运动分割。首先通过次模最大化自动选择少量具有代表性的轨迹。然后,所有初始轨迹可以以这些代表性轨迹为片段中心分割成片段。最后,通过两阶段自底向上的聚类方法将片段合并为簇,每个簇展示一个移动对象的运动。次模能量函数整合了所有轨迹的质量及其相关性。结果,数千条初始轨迹仅被几十条具有代表性的轨迹所取代,这将减少不准确的初始轨迹对运动分割的负面影响。在运动分割步骤中提取每个移动实体的颜色或纹理信息时,代表性轨迹将具有更大的权重。实验结果表明,我们的方法可以将轨迹划分为更准确的簇。最终的运动分割结果也表明,我们的方法优于基于轨迹聚类的现有运动分割方法。