Shen Jianbing, Dong Xingping, Peng Jianteng, Jin Xiaogang, Shao Ling, Porikli Fatih
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2637-2649. doi: 10.1109/TNNLS.2018.2885591. Epub 2019 Jan 7.
In this paper, we propose a framework of maximizing quadratic submodular energy with a knapsack constraint approximately, to solve certain computer vision problems. The proposed submodular maximization problem can be viewed as a generalization of the classic 0/1 knapsack problem. Importantly, maximization of our knapsack constrained submodular energy function can be solved via dynamic programing. We further introduce a range-reduction step prior to dynamic programing as a two-stage procedure for more efficient maximization. In order to demonstrate the effectiveness of the proposed energy function and its maximization algorithm, we apply it to two representative computer vision tasks: image segmentation and motion trajectory clustering. Experimental results of image segmentation demonstrate that our method outperforms the classic segmentation algorithms of graph cuts and random walks. Moreover, our framework achieves better performance than state-of-the-art methods on the motion trajectory clustering task.
在本文中,我们提出了一个近似求解具有背包约束的二次子模能量最大化的框架,以解决某些计算机视觉问题。所提出的子模最大化问题可视为经典0/1背包问题的推广。重要的是,我们的背包约束子模能量函数的最大化可以通过动态规划来解决。我们进一步在动态规划之前引入一个范围缩减步骤,作为一种更高效最大化的两阶段过程。为了证明所提出的能量函数及其最大化算法的有效性,我们将其应用于两个具有代表性的计算机视觉任务:图像分割和运动轨迹聚类。图像分割的实验结果表明,我们的方法优于图割和随机游走等经典分割算法。此外,我们的框架在运动轨迹聚类任务上比现有方法具有更好的性能。