Suppr超能文献

度量学习引导的最小二乘分类器学习

Metric Learning-Guided Least Squares Classifier Learning.

作者信息

Geng Chuanxing, Chen Songcan

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6409-6414. doi: 10.1109/TNNLS.2018.2830802. Epub 2018 May 18.

Abstract

For a multicategory classification problem, discriminative least squares regression (DLSR) explicitly introduces an -dragging technique to enlarge the margin between the categories, yielding superior classification performance from a margin perspective. In this brief, we reconsider this classification problem from a metric learning perspective and propose a framework of metric learning-guided least squares classifier (MLG-LSC) learning. The core idea is to learn a unified metric matrix for the error of LSR, such that such a metric matrix can yield small distances for the same category, while large ones for the different categories. As opposed to the -dragging in DLSR, we call this the error-dragging (e-dragging). Different from DLSR and its related variants, our MLG-LSC implicitly carries out the e-dragging and can naturally reflect the roughly relative distance relationships among the categories from a metric learning perspective. Furthermore, our optimization objective functions are strictly (geodesically) convex and thus can obtain their corresponding closed-form solutions, resulting in higher computational performance. Experimental results on a set of benchmark data sets indicate the validity of our learning framework.

摘要

对于多类别分类问题,判别式最小二乘回归(DLSR)明确引入了一种 - 拖动技术来扩大类别之间的间隔,从间隔角度来看,可产生卓越的分类性能。在本简报中,我们从度量学习的角度重新审视此分类问题,并提出一种度量学习引导的最小二乘分类器(MLG-LSC)学习框架。核心思想是为最小二乘回归(LSR)的误差学习一个统一的度量矩阵,使得这样一个度量矩阵对于同一类别能产生小距离,而对于不同类别产生大距离。与DLSR中的 - 拖动相反,我们将此称为误差拖动(e - 拖动)。与DLSR及其相关变体不同,我们的MLG-LSC隐式地执行e - 拖动,并且从度量学习角度自然地反映类别之间大致的相对距离关系。此外,我们的优化目标函数是严格(测地线)凸的,因此可以获得它们相应的闭式解,从而具有更高的计算性能。在一组基准数据集上的实验结果表明了我们学习框架的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验