Suppr超能文献

学习用于野外姿态不变人脸识别的姿态感知模型。

Learning Pose-Aware Models for Pose-Invariant Face Recognition in the Wild.

作者信息

Masi Iacopo, Chang Feng-Ju, Choi Jongmoo, Harel Shai, Kim Jungyeon, Kim KangGeon, Leksut Jatuporn, Rawls Stephen, Wu Yue, Hassner Tal, AbdAlmageed Wael, Medioni Gerard, Morency Louis-Philippe, Natarajan Prem, Nevatia Ram

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):379-393. doi: 10.1109/TPAMI.2018.2792452. Epub 2018 Jan 12.

Abstract

We propose a method designed to push the frontiers of unconstrained face recognition in the wild with an emphasis on extreme out-of-plane pose variations. Existing methods either expect a single model to learn pose invariance by training on massive amounts of data or else normalize images by aligning faces to a single frontal pose. Contrary to these, our method is designed to explicitly tackle pose variations. Our proposed Pose-Aware Models (PAM) process a face image using several pose-specific, deep convolutional neural networks (CNN). 3D rendering is used to synthesize multiple face poses from input images to both train these models and to provide additional robustness to pose variations at test time. Our paper presents an extensive analysis of the IARPA Janus Benchmark A (IJB-A), evaluating the effects that landmark detection accuracy, CNN layer selection, and pose model selection all have on the performance of the recognition pipeline. It further provides comparative evaluations on IJB-A and the PIPA dataset. These tests show that our approach outperforms existing methods, even surprisingly matching the accuracy of methods that were specifically fine-tuned to the target dataset. Parts of this work previously appeared in [1] and [2].

摘要

我们提出了一种旨在拓展无约束条件下自然环境中的人脸识别技术前沿的方法,重点关注极端的平面外姿态变化。现有方法要么期望单个模型通过大量数据训练来学习姿态不变性,要么通过将人脸对齐到单一正面姿态来对图像进行归一化处理。与这些方法不同,我们的方法旨在明确应对姿态变化。我们提出的姿态感知模型(PAM)使用多个特定于姿态的深度卷积神经网络(CNN)来处理人脸图像。利用3D渲染从输入图像合成多个面部姿态,以便训练这些模型,并在测试时为姿态变化提供额外的鲁棒性。我们的论文对IARPA Janus基准A(IJB-A)进行了广泛分析,评估了地标检测精度、CNN层选择和姿态模型选择对识别流程性能的影响。它还对IJB-A和PIPA数据集进行了比较评估。这些测试表明,我们的方法优于现有方法,甚至令人惊讶地达到了针对目标数据集进行专门微调的方法的准确率。这项工作的部分内容曾发表于[1]和[2]。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验