Suppr超能文献

利用滑动预测实现对新物体的抓握稳定性

Grip Stabilization of Novel Objects Using Slip Prediction.

作者信息

Veiga Filipe, Peters Jan, Hermans Tucker

出版信息

IEEE Trans Haptics. 2018 Oct-Dec;11(4):531-542. doi: 10.1109/TOH.2018.2837744. Epub 2018 May 21.

Abstract

Controlling contact with arbitrary, unknown objects defines a fundamental problem for robotic grasping and in-hand manipulation. In real-world scenarios, where robots interact with a variety of objects, the sheer number of possible contact interactions prohibits acquisition of the necessary models for all objects of interest. As an alternative to traditional control approaches that require accurate models, predicting the onset of slip can enable controlling contact interactions without explicit model knowledge. In this article, we propose a grip stabilization approach for novel objects based on slip prediction. Using tactile information, such as applied pressure and fingertip deformation, our approach predicts the emergence of slip and modulates the contact forces accordingly. We formulate a supervised-learning problem to predict the future occurrence of slip from high-dimensional tactile information provided by a BioTac sensor. This slip mapping generalizes across objects, including objects absent during training. We evaluate how different input features, slip prediction time horizons, and available tactile information channels, impact prediction accuracy. By mounting the sensor on a PA-10 robotic arm, we show that employing prediction in a controller's feedback loop yields an object grip stabilization controller that can successfully stabilize multiple, previously unknown objects by counteracting slip events.

摘要

控制与任意未知物体的接触是机器人抓取和手中操作的一个基本问题。在机器人与各种物体交互的现实世界场景中,可能的接触交互数量众多,使得获取所有感兴趣物体的必要模型变得不可能。作为需要精确模型的传统控制方法的替代方案,预测滑动的开始可以在没有明确模型知识的情况下实现对接触交互的控制。在本文中,我们提出了一种基于滑动预测的新物体抓握稳定方法。利用诸如施加的压力和指尖变形等触觉信息,我们的方法预测滑动的出现并相应地调节接触力。我们制定了一个监督学习问题,以根据BioTac传感器提供的高维触觉信息预测未来滑动的发生。这种滑动映射可以推广到各种物体,包括训练期间未出现的物体。我们评估了不同的输入特征、滑动预测时间范围和可用触觉信息通道对预测准确性的影响。通过将传感器安装在PA - 10机器人手臂上,我们表明在控制器的反馈回路中采用预测可以产生一个物体抓握稳定控制器,该控制器可以通过抵消滑动事件成功稳定多个先前未知的物体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验