Suppr超能文献

成对约束传播诱导的对称非负矩阵分解

Pairwise Constraint Propagation-Induced Symmetric Nonnegative Matrix Factorization.

作者信息

Wu Wenhui, Jia Yuheng, Kwong Sam, Hou Junhui

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6348-6361. doi: 10.1109/TNNLS.2018.2830761. Epub 2018 May 18.

Abstract

As a variant of nonnegative matrix factorization (NMF), symmetric NMF (SNMF) has shown to be effective for capturing the cluster structure embedded in the graph representation. In contrast to the existing SNMF-based clustering methods that empirically construct the similarity matrix and rigidly introduce the supervisory information to the assignment matrix, in this paper, we propose a novel SNMF-based semisupervised clustering method, namely, pairwise constraint propagation-induced SNMF (PCPSNMF). By formulating a single-constrained optimization problem, PCPSNMF is capable of learning the similarity and assignment matrices adaptively and simultaneously, in which a small amount of supervisory information in the form of pairwise constraints is introduced in a flexible way to guide the construction of the similarity matrix, and the two matrices communicate with each other to achieve mutual refinement until convergence. In addition, we propose an efficient alternating iterative algorithm to solve the optimization problem, whose convergence is theoretically proven. Experimental results over several benchmark image data sets demonstrate that PCPSNMF is less sensitive to initialization and produces higher clustering performance, compared with the state-of-the-art methods.

摘要

作为非负矩阵分解(NMF)的一种变体,对称非负矩阵分解(SNMF)已被证明在捕捉嵌入图表示中的聚类结构方面是有效的。与现有的基于SNMF的聚类方法不同,这些方法凭经验构建相似性矩阵并严格地将监督信息引入分配矩阵,在本文中,我们提出了一种基于SNMF的新型半监督聚类方法,即成对约束传播诱导的SNMF(PCPSNMF)。通过制定一个单约束优化问题,PCPSNMF能够自适应地同时学习相似性矩阵和分配矩阵,其中以成对约束形式的少量监督信息以灵活的方式被引入以指导相似性矩阵的构建,并且这两个矩阵相互通信以实现相互细化直至收敛。此外,我们提出了一种有效的交替迭代算法来解决该优化问题,其收敛性在理论上得到了证明。在几个基准图像数据集上的实验结果表明,与现有方法相比,PCPSNMF对初始化不太敏感并且产生更高的聚类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验