Suppr超能文献

学习用于视觉跟踪的多任务相关粒子滤波器

Learning Multi-Task Correlation Particle Filters for Visual Tracking.

作者信息

Zhang Tianzhu, Xu Changsheng, Yang Ming-Hsuan

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):365-378. doi: 10.1109/TPAMI.2018.2797062. Epub 2018 Jan 23.

Abstract

In this paper, we propose a multi-task correlation particle filter (MCPF) for robust visual tracking. We first present the multi-task correlation filter (MCF) that takes the interdependencies among different object parts and features into account to learn the correlation filters jointly. Next, the proposed MCPF is introduced to exploit and complement the strength of a MCF and a particle filter. Compared with existing tracking methods based on correlation filters and particle filters, the proposed MCPF enjoys several merits. First, it exploits the interdependencies among different features to derive the correlation filters jointly, and makes the learned filters complement and enhance each other to obtain consistent responses. Second, it handles partial occlusion via a part-based representation, and exploits the intrinsic relationship among local parts via spatial constraints to preserve object structure and learn the correlation filters jointly. Third, it effectively handles large scale variation via a sampling scheme by drawing particles at different scales for target object state estimation. Fourth, it shepherds the sampled particles toward the modes of the target state distribution via the MCF, and effectively covers object states well using fewer particles than conventional particle filters, thereby resulting in robust tracking performance and low computational cost. Extensive experimental results on four challenging benchmark datasets demonstrate that the proposed MCPF tracking algorithm performs favorably against the state-of-the-art methods.

摘要

在本文中,我们提出了一种用于鲁棒视觉跟踪的多任务相关粒子滤波器(MCPF)。我们首先介绍了多任务相关滤波器(MCF),它考虑了不同对象部分和特征之间的相互依赖性,以联合学习相关滤波器。接下来,引入了所提出的MCPF,以利用和补充MCF和粒子滤波器的优势。与现有的基于相关滤波器和粒子滤波器的跟踪方法相比,所提出的MCPF具有几个优点。首先,它利用不同特征之间的相互依赖性来联合推导相关滤波器,并使学习到的滤波器相互补充和增强,以获得一致的响应。其次,它通过基于部分的表示来处理部分遮挡,并通过空间约束利用局部部分之间的内在关系来保留对象结构并联合学习相关滤波器。第三,它通过一种采样方案有效地处理尺度变化,通过在不同尺度上绘制粒子来估计目标对象状态。第四,它通过MCF将采样粒子引导到目标状态分布的模式,并使用比传统粒子滤波器更少的粒子有效地覆盖对象状态,从而产生鲁棒的跟踪性能和低计算成本。在四个具有挑战性的基准数据集上的大量实验结果表明,所提出的MCPF跟踪算法优于当前的先进方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验