Suppr超能文献

不一致失真度量下的可逆数据隐藏

Reversible Data Hiding under Inconsistent Distortion Metrics.

作者信息

Hou Dongdong, Zhang Weiming, Yang Yang, Yu Nenghai

出版信息

IEEE Trans Image Process. 2018 Jun 27. doi: 10.1109/TIP.2018.2851074.

Abstract

Recursive code construction (RCC), based on the optimal transition probability matrix (OTPM), approaching the rate-distortion bound of reversible data hiding (RDH) has been proposed. Using the existing methods, OTPM can be effectively estimated only for a consistent distortion metric, i.e., if the host elements at different positions share the same distortion metric. However, in many applications, the distortion metrics are position dependent and should thus be inconsistent. Inconsistent distortion metrics can usually be quantified as a multi-distortion metric. In this paper, we first formulate the rate-distortion problem of RDH under a multi-distortion metric and subsequently propose a general framework to estimate the corresponding OTPM, with which RCC is extended to approach the rate-distortion bound of RDH under the multi-distortion metric. We apply the proposed framework to two examples of inconsistent distortion metrics: RDH in color image and reversible steganography. The experimental results show that the proposed method can efficiently improve upon the existing techniques.

摘要

基于最优转移概率矩阵(OTPM)的递归码构造(RCC)已被提出,其逼近可逆数据隐藏(RDH)的率失真界。使用现有方法,仅当失真度量一致时,即不同位置的宿主元素共享相同的失真度量时,才能有效地估计OTPM。然而,在许多应用中,失真度量与位置相关,因此应该是不一致的。不一致的失真度量通常可以量化为多失真度量。在本文中,我们首先在多失真度量下制定RDH的率失真问题,随后提出一个通用框架来估计相应的OTPM,利用该框架将RCC扩展以逼近多失真度量下RDH的率失真界。我们将所提出的框架应用于两个不一致失真度量的示例:彩色图像中的RDH和可逆隐写术。实验结果表明,所提出的方法可以有效地改进现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验