Suppr超能文献

基于空间区域加权相关比与 GPU 加速的非刚性图像配准。

Nonrigid Image Registration Using Spatially Region-Weighted Correlation Ratio and GPU-Acceleration.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):766-778. doi: 10.1109/JBHI.2018.2836380. Epub 2018 May 15.

Abstract

OBJECTIVE

Nonrigid image registration with high accuracy and efficiency remains a challenging task for medical image analysis. In this paper, we present the spatially region-weighted correlation ratio (SRWCR) as a novel similarity measure to improve the registration performance.

METHODS

SRWCR is rigorously deduced from a three-dimension joint probability density function combining the intensity channels with an extra spatial information channel. SRWCR estimates the optimal functional dependence between the intensities for each spatial bin, in which the spatial distribution modeled by a cubic B-spline function is used to differentiate the contribution of voxels. We also analytically derive the gradient of SRWCR with respect to the transformation parameters and optimize it using a quasi-Newton approach. Furthermore, we propose a GPU-based parallel mechanism to accelerate the computation of SRWCR and its derivatives.

RESULTS

The experiments on synthetic images, public four-dimensional thoracic computed tomography (CT) dataset, retinal optical coherence tomography data, and clinical CT and positron emission tomography images confirm that SRWCR significantly outperforms some state-of-the-art techniques such as spatially encoded mutual information and Robust PaTch-based cOrrelation Ration.

CONCLUSION

This study demonstrates the advantages of SRWCR in tackling the practical difficulties due to distinct intensity changes, serious speckle noise, or different imaging modalities.

SIGNIFICANCE

The proposed registration framework might be more reliable to correct the nonrigid deformations and more potential for clinical applications.

摘要

目的

对于医学图像分析而言,实现高精度和高效率的非刚性图像配准仍然是一项具有挑战性的任务。本文提出了一种新的相似度测度——空间区域加权相关比(SRWCR),以提高配准性能。

方法

SRWCR 是从一个三维联合概率密度函数中严格推导出来的,该函数将强度通道与额外的空间信息通道相结合。SRWCR 估计了每个空间体素的强度之间的最优函数依赖性,其中使用三次 B 样条函数来模拟空间分布,以区分体素的贡献。我们还对 SRWCR 相对于变换参数的梯度进行了分析推导,并使用拟牛顿方法对其进行了优化。此外,我们提出了一种基于 GPU 的并行机制,以加速 SRWCR 及其导数的计算。

结果

在合成图像、公共四维胸部 CT 数据集、视网膜光学相干层析成像数据以及临床 CT 和正电子发射断层扫描图像上的实验表明,SRWCR 显著优于一些最先进的技术,如空间编码互信息和基于 Robust PaTch 的相关比。

结论

本研究表明,SRWCR 在解决由于强度变化明显、严重斑点噪声或不同成像方式引起的实际困难方面具有优势。

意义

所提出的配准框架可能更可靠地纠正非刚性变形,并且更有可能用于临床应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验