Lancaster Environment Centre, Lancaster University, Lancaster, UK.
ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia.
Nature. 2018 Jul;559(7713):250-253. doi: 10.1038/s41586-018-0202-3. Epub 2018 Jul 11.
Biotic connectivity between ecosystems can provide major transport of organic matter and nutrients, influencing ecosystem structure and productivity, yet the implications are poorly understood owing to human disruptions of natural flows. When abundant, seabirds feeding in the open ocean transport large quantities of nutrients onto islands, enhancing the productivity of island fauna and flora. Whether leaching of these nutrients back into the sea influences the productivity, structure and functioning of adjacent coral reef ecosystems is not known. Here we address this question using a rare natural experiment in the Chagos Archipelago, in which some islands are rat-infested and others are rat-free. We found that seabird densities and nitrogen deposition rates are 760 and 251 times higher, respectively, on islands where humans have not introduced rats. Consequently, rat-free islands had substantially higher nitrogen stable isotope (δN) values in soils and shrubs, reflecting pelagic nutrient sources. These higher values of δN were also apparent in macroalgae, filter-feeding sponges, turf algae and fish on adjacent coral reefs. Herbivorous damselfish on reefs adjacent to the rat-free islands grew faster, and fish communities had higher biomass across trophic feeding groups, with 48% greater overall biomass. Rates of two critical ecosystem functions, grazing and bioerosion, were 3.2 and 3.8 times higher, respectively, adjacent to rat-free islands. Collectively, these results reveal how rat introductions disrupt nutrient flows among pelagic, island and coral reef ecosystems. Thus, rat eradication on oceanic islands should be a high conservation priority as it is likely to benefit terrestrial ecosystems and enhance coral reef productivity and functioning by restoring seabird-derived nutrient subsidies from large areas of ocean.
生物群落之间的生物连通性可以提供大量的有机物和养分运输,从而影响生态系统的结构和生产力,但由于人类对自然流动的干扰,其影响仍知之甚少。当海鸟在开阔海域觅食时,如果数量充足,它们会将大量的养分输送到岛屿上,从而提高岛屿动植物的生产力。然而,这些养分是否会渗回到海洋中,从而影响相邻珊瑚礁生态系统的生产力、结构和功能,目前还不清楚。在这里,我们利用查戈斯群岛的一个罕见的自然实验来解决这个问题,在这个群岛中,有些岛屿有老鼠,而有些岛屿没有。我们发现,在人类没有引入老鼠的岛屿上,海鸟的密度和氮沉积速率分别高出 760 倍和 251 倍。因此,无鼠岛屿的土壤和灌木中的氮稳定同位素(δN)值要高得多,反映了来自远洋的营养物质来源。这些较高的 δN 值在相邻珊瑚礁上的大型藻类、滤食性海绵、地衣藻类和鱼类中也很明显。与无鼠岛屿相邻的珊瑚礁上的草食性雀鲷生长得更快,并且各营养级的鱼类群落生物量更高,整体生物量增加了 48%。与无鼠岛屿相邻的珊瑚礁上的摄食和生物侵蚀这两个关键生态系统功能的速率分别高出 3.2 倍和 3.8 倍。总的来说,这些结果揭示了老鼠的引入是如何破坏了浮游生物、岛屿和珊瑚礁生态系统之间的养分流动。因此,在海洋岛屿上消灭老鼠应该是一个高度优先的保护事项,因为这可能会通过从大片海域恢复海鸟衍生的养分补贴来使陆地生态系统受益,并提高珊瑚礁的生产力和功能。