Suppr超能文献

基于现场案例的危险气体扩散预测的机器学习模型比较。

Comparison of Machine Learning Models for Hazardous Gas Dispersion Prediction in Field Cases.

机构信息

College of System Engineering, National University of Defense Technology, 109 Deya Road, Changsha 410073, China.

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Building 28, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands.

出版信息

Int J Environ Res Public Health. 2018 Jul 10;15(7):1450. doi: 10.3390/ijerph15071450.

Abstract

Dispersion prediction plays a significant role in the management and emergency response to hazardous gas emissions and accidental leaks. Compared with conventional atmospheric dispersion models, machine leaning (ML) models have both high accuracy and efficiency in terms of prediction, especially in field cases. However, selection of model type and the inputs of the ML model are still essential problems. To address this issue, two ML models (i.e., the back propagation (BP) network and support vector regression (SVR) with different input selections (i.e., original monitoring parameters and integrated Gaussian parameters) are proposed in this paper. To compare the performances of presented ML models in field cases, these models are evaluated using the Prairie Grass and Indianapolis field data sets. The influence of the training set scale on the performances of ML models is analyzed as well. Results demonstrate that the integrated Gaussian parameters indeed improve the prediction accuracy in the Prairie Grass case. However, they do not make much difference in the Indianapolis case due to their inadaptability to the complex terrain conditions. In addition, it can be summarized that the SVR shows better generalization ability with relatively small training sets, but tends to under-fit the training data. In contrast, the BP network has a stronger fitting ability, but sometimes suffers from an over-fitting problem. As a result, the model and input selection presented in this paper will be of great help to environmental and public health protection in real applications.

摘要

扩散预测在危险气体排放和意外泄漏的管理和应急响应中起着重要作用。与传统的大气扩散模型相比,机器学习 (ML) 模型在预测方面具有高精度和高效率的特点,尤其是在现场情况下。然而,模型类型的选择和 ML 模型的输入仍然是至关重要的问题。为了解决这个问题,本文提出了两种 ML 模型(即反向传播 (BP) 网络和支持向量回归 (SVR)),它们具有不同的输入选择(即原始监测参数和综合高斯参数)。为了比较提出的 ML 模型在现场情况下的性能,使用 Prairie Grass 和 Indianapolis 现场数据集对这些模型进行了评估。还分析了训练集规模对 ML 模型性能的影响。结果表明,综合高斯参数确实提高了 Prairie Grass 案例的预测精度。然而,由于它们不适应复杂的地形条件,在 Indianapolis 案例中并没有太大区别。此外,可以总结出 SVR 具有相对较小的训练集时具有更好的泛化能力,但容易出现欠拟合问题。相比之下,BP 网络具有更强的拟合能力,但有时会出现过拟合问题。因此,本文提出的模型和输入选择将对实际应用中的环境和公共卫生保护有很大帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba65/6069387/fca7bbf66a84/ijerph-15-01450-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验