Suppr超能文献

具有自动抓握选择功能的脑电图控制功能性电刺激疗法:一项概念验证研究。

EEG-Controlled Functional Electrical Stimulation Therapy With Automated Grasp Selection: A Proof-of-Concept Study.

作者信息

Likitlersuang Jirapat, Koh Ryan, Gong Xinyi, Jovanovic Lazar, Bolivar-Tellería Isabel, Myers Matthew, Zariffa José, Márquez-Chin César

机构信息

Toronto Rehabilitation Institute - University Health Network, Toronto, Canada.

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.

出版信息

Top Spinal Cord Inj Rehabil. 2018 Summer;24(3):265-274. doi: 10.1310/sci2403-265.

Abstract

Functional electrical stimulation therapy (FEST) is a promising intervention for the restoration of upper extremity function after cervical spinal cord injury (SCI). This study describes and evaluates a novel FEST system designed to incorporate voluntary movement attempts and massed practice of functional grasp through the use of brain-computer interface (BCI) and computer vision (CV) modules. An EEG-based BCI relying on a single electrode was used to detect movement initiation attempts. A CV system identified the target object and selected the appropriate grasp type. The required grasp type and trigger command were sent to an FES stimulator, which produced one of four multichannel muscle stimulation patterns (precision, lateral, palmar, or lumbrical grasp). The system was evaluated with five neurologically intact participants and one participant with complete cervical SCI. An integrated BCI-CV-FES system was demonstrated. The overall classification accuracy of the CV module was 90.8%, when selecting out of a set of eight objects. The average latency for the BCI module to trigger the movement across all participants was 5.9 ± 1.5 seconds. For the participant with SCI alone, the CV accuracy was 87.5% and the BCI latency was 5.3 ± 9.4 seconds. BCI and CV methods can be integrated into an FEST system without the need for costly resources or lengthy setup times. The result is a clinically relevant system designed to promote voluntary movement attempts and more repetitions of varied functional grasps during FEST.

摘要

功能性电刺激疗法(FEST)是一种很有前景的干预方法,用于恢复颈脊髓损伤(SCI)后上肢的功能。本研究描述并评估了一种新型FEST系统,该系统旨在通过使用脑机接口(BCI)和计算机视觉(CV)模块,纳入自主运动尝试和功能性抓握的集中练习。基于脑电图的单电极BCI用于检测运动起始尝试。一个CV系统识别目标物体并选择合适的抓握类型。所需的抓握类型和触发命令被发送到一个FES刺激器,该刺激器产生四种多通道肌肉刺激模式之一(精确抓握、侧方抓握、掌侧抓握或蚓状肌抓握)。该系统在5名神经功能正常的参与者和1名完全性颈SCI参与者中进行了评估。展示了一个集成的BCI-CV-FES系统。当从一组8个物体中进行选择时,CV模块的总体分类准确率为90.8%。所有参与者中BCI模块触发运动的平均延迟为5.9±1.5秒。对于仅患有SCI的参与者,CV准确率为87.5%,BCI延迟为5.3±9.4秒。BCI和CV方法可以集成到一个FEST系统中,无需昂贵的资源或冗长的设置时间。结果是一个与临床相关的系统,旨在促进自主运动尝试,并在FEST期间增加各种功能性抓握的重复次数。

相似文献

1
EEG-Controlled Functional Electrical Stimulation Therapy With Automated Grasp Selection: A Proof-of-Concept Study.
Top Spinal Cord Inj Rehabil. 2018 Summer;24(3):265-274. doi: 10.1310/sci2403-265.
3
KITE-BCI: A brain-computer interface system for functional electrical stimulation therapy.
J Spinal Cord Med. 2021;44(sup1):S203-S214. doi: 10.1080/10790268.2021.1970895.

引用本文的文献

3
EEG-controlled functional electrical stimulation rehabilitation for chronic stroke: system design and clinical application.
Front Med. 2021 Oct;15(5):740-749. doi: 10.1007/s11684-020-0794-5. Epub 2021 Jun 22.
4
Upper Limb Home-Based Robotic Rehabilitation During COVID-19 Outbreak.
Front Robot AI. 2021 May 24;8:612834. doi: 10.3389/frobt.2021.612834. eCollection 2021.
5
Hemodynamic Signal Changes During Motor Imagery Task Performance Are Associated With the Degree of Motor Task Learning.
Front Hum Neurosci. 2021 Apr 15;15:603069. doi: 10.3389/fnhum.2021.603069. eCollection 2021.

本文引用的文献

4
A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke.
Clin EEG Neurosci. 2015 Oct;46(4):310-20. doi: 10.1177/1550059414522229. Epub 2014 Apr 21.
5
Restoring voluntary grasping function in individuals with incomplete chronic spinal cord injury: pilot study.
Top Spinal Cord Inj Rehabil. 2013 Fall;19(4):279-87. doi: 10.1310/sci1904-279.
6
Brain-machine interface in chronic stroke rehabilitation: a controlled study.
Ann Neurol. 2013 Jul;74(1):100-8. doi: 10.1002/ana.23879. Epub 2013 Aug 7.
9
Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.
Neurorehabil Neural Repair. 2010 Sep;24(7):674-9. doi: 10.1177/1545968310368683. Epub 2010 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验