Hutt Axel, Griffiths John D, Herrmann Christoph S, Lefebvre Jérémie
Deutscher Wetterdienst, Department FE12-Data Assimilation, Offenbach am Main, Germany.
Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada.
Front Neurosci. 2018 Jun 26;12:376. doi: 10.3389/fnins.2018.00376. eCollection 2018.
In the past decade, there has been a surge of interest in using patterned brain stimulation to manipulate cortical oscillations, in both experimental and clinical settings. But the relationship between stimulation waveform and its impact on ongoing oscillations remains poorly understood and severely restrains the development of new paradigms. To address some aspects of this intricate problem, we combine computational and mathematical approaches, providing new insights into the influence of waveform of both low and high-frequency stimuli on synchronous neural activity. Using a cellular-based cortical microcircuit network model, we performed numerical simulations to test the influence of different waveforms on ongoing alpha oscillations, and derived a mean-field description of stimulation-driven dynamics to better understand the observed responses. Our analysis shows that high-frequency periodic stimulation translates into an effective transformation of the neurons' response function, leading to waveform-dependent changes in oscillatory dynamics and resting state activity. Moreover, we found that randomly fluctuating stimulation linearizes the neuron response function while constant input moves its activation threshold. Taken together, our findings establish a new theoretical framework in which stimulation waveforms impact neural systems at the population-scale through non-linear interactions.
在过去十年中,无论是在实验还是临床环境中,使用模式化脑刺激来操纵皮层振荡都引发了极大的兴趣。但刺激波形与其对持续振荡的影响之间的关系仍知之甚少,这严重制约了新范式的发展。为了解决这个复杂问题的一些方面,我们结合了计算和数学方法,为低频和高频刺激波形对同步神经活动的影响提供了新的见解。我们使用基于细胞的皮层微电路网络模型进行数值模拟,以测试不同波形对持续阿尔法振荡的影响,并推导了刺激驱动动力学的平均场描述,以更好地理解观察到的反应。我们的分析表明,高频周期性刺激转化为神经元反应函数的有效转变,导致振荡动力学和静息状态活动中与波形相关的变化。此外,我们发现随机波动的刺激使神经元反应函数线性化,而恒定输入则移动其激活阈值。综上所述,我们的研究结果建立了一个新的理论框架,其中刺激波形通过非线性相互作用在群体水平上影响神经系统。