Lefebvre Jeremie, Pariz Aref
Department of Biology, University of Ottawa, Ottawa, ON, Canada.
Department of Physics, University of Ottawa, Ottawa, ON, Canada.
Front Netw Physiol. 2025 Jul 18;5:1621283. doi: 10.3389/fnetp.2025.1621283. eCollection 2025.
Periodic brain stimulation (PBS) techniques, either intracranial or non-invasive, electrical or magnetic, represent promising neuromodulatory tools for the treatment of neurological and neuropsychiatric disorders. Through the modulation of endogenous oscillations, PBS may engage synaptic plasticity, hopefully leading to persistent lasting effects. However, stabilizing such effects represents an important challenge: the interaction between induced electromagnetic fields and neural circuits may yield highly variable responses due to heterogeneous neuronal and synaptic biophysical properties, limiting PBS clinical potential.
In this study, we explored the conditions on which transcranial alternating current stimulation (tACS) as a common type of non-invasive PBS leads to amplified post-stimulation oscillatory power, persisting once stimulation has been turned off. We specifically examined the effects of heterogeneity in neuron time scales on post-stimulation dynamics in a population of balanced Leaky-Integrate and Fire (LIF) neurons that exhibit synchronous-irregular spiking activity.
Our analysis reveals that such heterogeneity enables tACS to engage synaptic plasticity, amplifying post-stimulation power. Our results show that such post-stimulation aftereffects result from selective frequency- and cell-type-specific synaptic modifications. We evaluated the relative importance of stimulation-induced plasticity amongst and between excitatory and inhibitory populations.
Our results indicate that heterogeneity in neurons' time scales and synaptic plasticity are both essential for stimulation to support post-stimulation aftereffects, notably to amplify the power of endogenous rhythms.
周期性脑刺激(PBS)技术,无论是颅内的还是非侵入性的,电刺激还是磁刺激,都是用于治疗神经和神经精神疾病的有前景的神经调节工具。通过调节内源性振荡,PBS可能会促进突触可塑性,有望产生持久的效果。然而,稳定这些效果是一项重大挑战:由于神经元和突触生物物理特性的异质性,感应电磁场与神经回路之间的相互作用可能会产生高度可变的反应,限制了PBS的临床潜力。
在本研究中,我们探讨了作为一种常见的非侵入性PBS的经颅交流电刺激(tACS)在何种条件下会导致刺激后振荡功率放大,且在刺激关闭后仍持续存在。我们特别研究了神经元时间尺度的异质性对表现出同步不规则放电活动的平衡型漏电积分发放(LIF)神经元群体中刺激后动力学的影响。
我们的分析表明,这种异质性使tACS能够促进突触可塑性,放大刺激后的功率。我们的结果表明,这种刺激后效应源于选择性的频率特异性和细胞类型特异性突触修饰。我们评估了兴奋性和抑制性群体之间以及群体内部刺激诱导可塑性的相对重要性。
我们的结果表明,神经元时间尺度的异质性和突触可塑性对于刺激支持刺激后效应都是必不可少的,特别是放大内源性节律的功率。