Viswan Nisha A, HarshaRani Gubbi Vani, Stefan Melanie I, Bhalla Upinder S
National Centre for Biological Sciences, Bangalore, India.
Tata Institute of Fundamental Research, The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India.
Front Neuroinform. 2018 Jun 26;12:38. doi: 10.3389/fninf.2018.00038. eCollection 2018.
Current experiments touch only small but overlapping parts of very complex subcellular signaling networks in neurons. Even with modern optical reporters and pharmacological manipulations, a given experiment can only monitor and control a very small subset of the diverse, multiscale processes of neuronal signaling. We have developed FindSim (Framework for Integrating Neuronal Data and SIgnaling Models) to anchor models to structured experimental datasets. FindSim is a framework for integrating many individual electrophysiological and biochemical experiments with large, multiscale models so as to systematically refine and validate the model. We use a structured format for encoding the conditions of many standard physiological and pharmacological experiments, specifying which parts of the model are involved, and comparing experiment outcomes with model output. A database of such experiments is run against successive generations of composite cellular models to iteratively improve the model against each experiment, while retaining global model validity. We suggest that this toolchain provides a principled and scalable way to tackle model complexity and diversity of data sources.
当前的实验仅涉及神经元中非常复杂的亚细胞信号网络的微小但相互重叠的部分。即使使用现代光学报告分子和药理学操作,给定的实验也只能监测和控制神经元信号传导中多样的多尺度过程的一个非常小的子集。我们开发了FindSim(整合神经元数据和信号模型框架),以将模型锚定到结构化的实验数据集。FindSim是一个将许多单独的电生理和生化实验与大型多尺度模型整合在一起的框架,以便系统地完善和验证模型。我们使用一种结构化格式来编码许多标准生理和药理实验的条件,指定模型的哪些部分涉及其中,并将实验结果与模型输出进行比较。针对连续几代的复合细胞模型运行此类实验的数据库,以针对每个实验迭代改进模型,同时保持全局模型有效性。我们认为,这个工具链提供了一种有原则且可扩展的方法来应对模型复杂性和数据源的多样性。