Suppr超能文献

生物化学网络层次优化的数学基础与工具链

Mathematical basis and toolchain for hierarchical optimization of biochemical networks.

作者信息

Viswan Nisha Ann, Tribut Alexandre, Gasparyan Manvel, Radulescu Ovidiu, Bhalla Upinder S

机构信息

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.

The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India.

出版信息

PLoS Comput Biol. 2024 Dec 2;20(12):e1012624. doi: 10.1371/journal.pcbi.1012624. eCollection 2024 Dec.

Abstract

Biological signalling systems are complex, and efforts to build mechanistic models must confront a huge parameter space, indirect and sparse data, and frequently encounter multiscale and multiphysics phenomena. We present HOSS, a framework for Hierarchical Optimization of Systems Simulations, to address such problems. HOSS operates by breaking down extensive systems models into individual pathway blocks organized in a nested hierarchy. At the first level, dependencies are solely on signalling inputs, and subsequent levels rely only on the preceding ones. We demonstrate that each independent pathway in every level can be efficiently optimized. Once optimized, its parameters are held constant while the pathway serves as input for succeeding levels. We develop an algorithmic approach to identify the necessary nested hierarchies for the application of HOSS in any given biochemical network. Furthermore, we devise two parallelizable variants that generate numerous model instances using stochastic scrambling of parameters during initial and intermediate stages of optimization. Our results indicate that these variants produce superior models and offer an estimate of solution degeneracy. Additionally, we showcase the effectiveness of the optimization methods for both abstracted, event-based simulations and ODE-based models.

摘要

生物信号系统十分复杂,构建机理模型的努力必须面对巨大的参数空间、间接且稀疏的数据,并且经常会遇到多尺度和多物理现象。我们提出了HOSS,即系统模拟分层优化框架,以解决此类问题。HOSS通过将广泛的系统模型分解为以嵌套层次结构组织的各个信号通路模块来运行。在第一层,依赖性仅取决于信号输入,后续层仅依赖于前一层。我们证明了每一层中的每个独立通路都可以得到有效优化。一旦优化完成,其参数保持不变,而该通路则作为后续层的输入。我们开发了一种算法方法,用于确定在任何给定生化网络中应用HOSS所需的嵌套层次结构。此外,我们设计了两个可并行化的变体,它们在优化的初始和中间阶段使用参数的随机加扰生成大量模型实例。我们的结果表明,这些变体产生了更优的模型,并提供了对解简并性的估计。此外,我们展示了优化方法对于抽象的、基于事件的模拟和基于常微分方程(ODE)的模型的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验