Suppr超能文献

通过原位形成高度分散的铑纳米团簇实现高效制氢

Towards High-Efficiency Hydrogen Production through in situ Formation of Well-Dispersed Rhodium Nanoclusters.

作者信息

Hu Min, Ming Mei, Xu Caili, Wang Yi, Zhang Yun, Gao Daojiang, Bi Jian, Fan Guangyin

机构信息

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P.R. China.

出版信息

ChemSusChem. 2018 Sep 21;11(18):3253-3258. doi: 10.1002/cssc.201801204. Epub 2018 Aug 5.

Abstract

Rh-based materials have emerged as potential candidates for hydrogen revolution from electrolyzing water or ammonia borane (AB) hydrolysis. Nevertheless, most of the catalysts still suffer from the complex synthetic procedures combined with limited catalytic activity. Additionally, the facile syntheses of Rh catalysts with high efficiencies for both electrochemical water splitting and AB hydrolysis are still challenging. Herein, we develop a simple, green, and mass-producible ion-adsorption strategy to produce a Rh/C pre-catalyst (pre-Rh/C). The ultrafine and clean Rh nanoclusters immobilized on carbon are achieved via the in situ reduction of the pre-Rh/C during the hydrogen-evolution process. The resulting in situ Rh/C catalyst presents an outstanding electrocatalytic performance with low overpotentials of 8 and 30 mV at 10 mA cm in 1.0 m KOH and 0.5 m H SO , respectively, outperforming the state-of-the-art Pt catalysts. Furthermore, the in situ Rh/C is also highly active for AB hydrolysis to produce hydrogen with a high turnover frequency of 1246 mol  mol  min at 25 °C. The in situ-formed ultrafine Rh nanoclusters are responsible for the observed superior catalytic performance. This facile in situ strategy to realize a highly active catalyst shows promise for practical applications.

摘要

基于铑的材料已成为通过电解水或硼氨水解实现氢能源革命的潜在候选材料。然而,大多数催化剂仍存在合成过程复杂且催化活性有限的问题。此外,开发出对电化学水分解和硼氨水解均具有高效性的简便合成铑催化剂的方法仍然具有挑战性。在此,我们开发了一种简单、绿色且可大规模生产的离子吸附策略来制备Rh/C预催化剂(pre-Rh/C)。通过在析氢过程中原位还原pre-Rh/C,实现了固定在碳上的超细微且纯净的铑纳米团簇。所得的原位Rh/C催化剂呈现出优异的电催化性能,在1.0 m KOH和0.5 m H₂SO₄中,在10 mA cm⁻²时的过电位分别低至8和30 mV,优于目前最先进的铂催化剂。此外,原位Rh/C对硼氨水解制氢也具有高活性,在25°C下的周转频率高达1246 mol⁻¹ mol min⁻¹。原位形成的超细微铑纳米团簇是观察到的优异催化性能的原因。这种实现高活性催化剂的简便原位策略在实际应用中显示出前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验