Institute of Rheological Mechanics, Xiangtan University, Hunan 411105, People's Republic of China.
Nanotechnology. 2018 Oct 5;29(40):405602. doi: 10.1088/1361-6528/aad2f9. Epub 2018 Jul 12.
TiO-based nanomaterials are demonstrated to be a promising candidate for next generation lithium ion batteries due to their stable performance and easy preparation. However, their inherent low capacity impedes their wide application compared to commercial carbon nanomaterials. Here we present a unique in situ grafting-graphitization method to achieve a ternary nanocomposite of C/SiO /TiO ultrathin nanobelts with a core-shell heterostructure. The obtained ternary nanocomposite integrates the merits of high specific capacity of SiO , the excellent mechanical stability of graphite-like carbon and the high reactivity of TiO. Cyclic voltammetric curves and cycling performance manifest the optimal ternary nanocomposite and deliver a very high initial specific capacity of ∼1196 mA h g with both good rate capability (∼200 mA h g up to 10 C) and especially enhanced cycle stability. Our work demonstrates that building hierarchical core-shell heterostructures is an effective strategy to improve capacity and cycling performance in other composite anodes for electrochemical energy storage materials.
基于 TiO 的纳米材料由于其稳定的性能和易于制备,被证明是下一代锂离子电池的有前途的候选材料。然而,与商业碳纳米材料相比,其固有的低容量阻碍了其广泛应用。在这里,我们提出了一种独特的原位接枝-石墨化方法,以实现具有核壳异质结构的 C/SiO /TiO 超薄纳米带的三元纳米复合材料。所得到的三元纳米复合材料结合了 SiO 的高比容量、类石墨碳的优异机械稳定性和 TiO 的高反应性的优点。循环伏安曲线和循环性能表明最佳的三元纳米复合材料具有非常高的初始比容量(约 1196 mA h g),同时具有良好的倍率性能(高达 10 C 时约为 200 mA h g)和特别增强的循环稳定性。我们的工作表明,构建分级核壳异质结构是提高电化学储能材料中其他复合阳极的容量和循环性能的有效策略。