Suppr超能文献

具有增强电化学性能的分级 MoO/SnS 核壳纳米线用于锂离子电池。

Hierarchical MoO/SnS core-shell nanowires with enhanced electrochemical performance for lithium-ion batteries.

机构信息

College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.

出版信息

Phys Chem Chem Phys. 2018 Jun 27;20(25):17171-17179. doi: 10.1039/c8cp01799a.

Abstract

Two-dimensional (2D) tin disulfide (SnS2) is a promising anode material for lithium-ion batteries (LIBs) because of its high theoretical capacity. The main challenges associated with the SnS2 electrodes are the poor cycling stability and low rate capability due to structural degradation in the discharge/charge process. Here, a facile two-step synthesis method is developed to fabricate hierarchical MoO3/SnS2 core-shell nanowires, where ultrathin SnS2 nanosheets are vertically anchored on MoO3 nanobelts to induce a heterointerface. Benefiting from the unique structural and compositional characteristics, the hierarchical MoO3/SnS2 core-shell nanowires exhibit excellent electrochemical performance and deliver a high reversible capacity of 504 mA h g-1 after 100 stable cycles at a current density of 100 mA g-1, which is far superior to the MoO3 and SnS2 electrodes. An analysis of lithiation dynamics based on ab initio molecular dynamics simulations demonstrates that the formation of a hierarchical MoO3/SnS2 core-shell heterostructure can effectively suppress the rapid dissociation of shell-layer SnS2 nanosheets via the interfacial coupling effect and the central MoO3 backbone can trap and support the polysulfide in the discharge/charge process. The results are responsible for the high storage capacity and rate capability of MoO3/SnS2 electrode materials. This work provides a novel design strategy for constructing high-performance electrodes for LIBs.

摘要

二维(2D)二硫化锡(SnS2)因其高理论容量而成为锂离子电池(LIBs)有前途的阳极材料。SnS2 电极面临的主要挑战是由于在放电/充电过程中结构降解,循环稳定性差和倍率性能低。在这里,开发了一种简便的两步合成方法来制造分层 MoO3/SnS2 核壳纳米线,其中超薄 SnS2 纳米片垂直锚定在 MoO3 纳米带上以诱导异质界面。受益于独特的结构和组成特性,分层 MoO3/SnS2 核壳纳米线表现出优异的电化学性能,在 100 mA g-1 的电流密度下经过 100 次稳定循环后可提供 504 mA h g-1 的高可逆容量,远远超过 MoO3 和 SnS2 电极。基于从头算分子动力学模拟的嵌锂动力学分析表明,分层 MoO3/SnS2 核壳异质结构的形成可以通过界面耦合效应有效抑制壳层 SnS2 纳米片的快速解离,而中心 MoO3 骨架可以在放电/充电过程中捕获和支撑多硫化物。这些结果是 MoO3/SnS2 电极材料高存储容量和倍率性能的原因。这项工作为构建高性能 LIBs 电极提供了一种新的设计策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验