Departments of Pediatrics and.
Duke Molecular Physiology Institute, Durham, North Carolina; and.
J Am Soc Nephrol. 2018 Aug;29(8):2110-2122. doi: 10.1681/ASN.2017121338. Epub 2018 Jul 12.
We previously reported that mutations in the anillin () gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP.
We conducted complementation assays in zebrafish to determine the effect of the previously identified missense variants, and during development. We also performed functional assays using human podocyte cell lines stably expressing wild-type ANLN ( ) or .
Experiments in -deficient zebrafish embryos showed a loss-of-function effect for each variant. In human podocyte lines, expression of increased cell migration, proliferation, and apoptosis. Biochemical characterization of -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in -expressing podocytes. Inhibition of mTOR, GSK-3, Rac1, or calcineurin ameliorated the effects of . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR.
The mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.
我们之前报道过,肌球蛋白结合蛋白(anillin)基因的突变可导致家族性局灶节段性肾小球硬化症(FSGS)。ANLN 是一种 F-肌动蛋白结合蛋白,可调节足细胞的细胞运动,并通过裂孔隔膜衔接蛋白 CD2 相关蛋白(CD2AP)与磷酸肌醇 3-激酶(PI3K)途径相互作用。然而,导致 FSGS 表型的突变机制尚不清楚。我们推测 R431C 突变通过使 ANLN 与 CD2AP 解偶联而发挥其致病作用。
我们在斑马鱼中进行了补充实验,以确定先前鉴定的错义变体和在发育过程中的作用。我们还使用稳定表达野生型 ANLN()或的人足细胞系进行了功能实验。
在 -缺陷的斑马鱼胚胎中,每个变体均表现出功能丧失效应。在人足细胞系中,表达增加了细胞迁移、增殖和凋亡。表达的足细胞的生化特征显示 PI3K/AKT/mTOR/p70S6K/Rac1 信号轴过度激活,mTOR 驱动的内质网应激在表达的足细胞中激活。mTOR、GSK-3、Rac1 或钙调神经磷酸酶的抑制可改善的作用。此外,钙调神经磷酸酶/NFAT 途径的抑制可降低内源性 ANLN 和 mTOR 的表达。
突变通过过度激活 PI3K/AKT/mTOR/p70S6K/Rac1 信号通路导致足细胞功能的多种异常。我们的研究结果表明,钙调神经磷酸酶抑制在 FSGS 中的益处部分归因于 ANLN 和 mTOR 的抑制。此外,这些研究表明,通过对失调的足细胞表型进行生化特征分析,可以确定家族性 FSGS 的合理治疗靶点。