Mahley R W, Innerarity T L, Rall S C, Weisgraber K H
Ann N Y Acad Sci. 1985;454:209-21. doi: 10.1111/j.1749-6632.1985.tb11860.x.
In summary, the study of type III hyperlipoproteinemia has provided important insights into lipoprotein metabolism that have helped to elucidate several functional roles for apo E and have provided a better understanding of the mechanisms whereby specific lipoproteins may be atherogenic or anti-atherogenic. The molecular defect in type III hyperlipoproteinemia and dysbetalipoproteinemia is the presence of a mutant form of apo E, usually apo E2, that is defective in binding to both apo B,E(LDL) and apo E receptors. The receptor-defective apo E results in an impaired clearance of remnant lipoproteins (beta-VLDL). In addition, the abnormal apo E may impair the lipolytic processing of hepatic beta-VLDL through its involvement in lipid transfer or exchange processes. The accumulation of beta-VLDL may provide the most direct mechanism responsible for the accelerated atherosclerosis observed in type III hyperlipoproteinemia, a mechanism that involves the receptor mediated uptake of beta-VLDL by macrophages, which are then converted to arterial foam cells. Alterations in the HDL of patients with type III hyperlipoproteinemia further support the concept that HDL are anti-atherogenic. The increase in HDL-with apo E provides insight into the role of these cholesterol-enriched HDL in reverse cholesterol transport and in the cellular redistribution of cholesterol, processes whereby cholesterol deposition may be reversed. It should be stressed that both the accumulation of beta-VLDL and alterations in HDL (reduction in typical HDL and an increase in HDL-with apo E) are associated with accelerated atherogenesis in animals fed high levels of fat and cholesterol. Although valuable information has been gained concerning the mechanisms involved in type III hyperlipoproteinemia by the study of the disease, the clinical expression of this disorder is variable, ranging from hypocholesterolemia to marked hypercholesterolemia in subjects with the same molecular defect (E2/2). This variability in expression is more easily understood when one considers the various factors that can promote the hyperlipoproteinemia and when one considers the mechanisms of action whereby these factors may exacerbate the effects of the presence of an abnormal apo E. In most cases, development of type III hyperlipoproteinemia requires that a second event (a predisposing environmental factor or a second genetic defect) be associated with the primary genetic defect (an abnormal form of apo E).
总之,对III型高脂蛋白血症的研究为脂蛋白代谢提供了重要见解,有助于阐明载脂蛋白E的多种功能作用,并更好地理解特定脂蛋白可能致动脉粥样硬化或抗动脉粥样硬化的机制。III型高脂蛋白血症和异常β脂蛋白血症的分子缺陷是存在一种突变形式的载脂蛋白E,通常是载脂蛋白E2,它在与载脂蛋白B、E(低密度脂蛋白)和载脂蛋白E受体结合方面存在缺陷。受体缺陷型载脂蛋白E导致残余脂蛋白(β-极低密度脂蛋白)清除受损。此外,异常的载脂蛋白E可能通过参与脂质转运或交换过程而损害肝脏β-极低密度脂蛋白的脂解过程。β-极低密度脂蛋白的积累可能是III型高脂蛋白血症中观察到的动脉粥样硬化加速的最直接机制,该机制涉及巨噬细胞通过受体介导摄取β-极低密度脂蛋白,然后巨噬细胞转化为动脉泡沫细胞。III型高脂蛋白血症患者高密度脂蛋白的改变进一步支持了高密度脂蛋白具有抗动脉粥样硬化作用的观点。载脂蛋白E的高密度脂蛋白增加为这些富含胆固醇的高密度脂蛋白在逆向胆固醇转运和胆固醇细胞再分布中的作用提供了见解,通过这些过程胆固醇沉积可能会被逆转。应该强调的是,β-极低密度脂蛋白的积累和高密度脂蛋白的改变(典型高密度脂蛋白减少和载脂蛋白E的高密度脂蛋白增加)都与喂食高脂肪和高胆固醇饮食的动物动脉粥样硬化加速有关。尽管通过对该疾病的研究已经获得了关于III型高脂蛋白血症相关机制的有价值信息,但这种疾病的临床表现是可变的,在具有相同分子缺陷(E2/2)的个体中,从低胆固醇血症到明显的高胆固醇血症都有。当考虑到可以促进高脂蛋白血症的各种因素以及这些因素可能加剧异常载脂蛋白E存在的影响的作用机制时,这种表达的变异性就更容易理解了。在大多数情况下,III型高脂蛋白血症的发生需要第二个事件(一个易患环境因素或第二个遗传缺陷)与原发性遗传缺陷(异常形式的载脂蛋白E)相关联。