Herbst-Gervasoni Corey J, Gau Michael R, Zdilla Michael J, Valentine Ann M
Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19122, USA.
Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104, USA.
Acta Crystallogr E Crystallogr Commun. 2018 Jun 8;74(Pt 7):918-925. doi: 10.1107/S2056989018008009. eCollection 2018 Jul 1.
The solid-state structures of the Na, Li, and NH salts of the 4,5-di-hydroxy-benzene-1,3-di-sulfonate (tiron) dianion are reported, namely disodium 4,5-di-hydroxy-benzene-1,3-di-sulfonate, 2Na·CHOS, μ-4,5-di-hydroxy-benzene-1,3-di-sulfonato-bis-[aqua-lithium(I)] hemihydrate, [Li(CHOS)(HO)]·0.5HO, and di-ammonium 4,5-di-hydroxy-benzene-1,3-di-sulfonate monohydrate, 2NH·CHOS·HO. Inter-molecular inter-actions vary with the size of the cation, and the asymmetric unit cell, and the macromolecular features are also affected. The sodium in Na(tiron) is coordinated in a distorted octa-hedral environment through the sulfonate oxygen and hydroxyl oxygen donors on tiron, as well as an inter-stitial water mol-ecule. Lithium, with its smaller ionic radius, is coordinated in a distorted tetra-hedral environment by sulfonic and phenolic O atoms, as well as water in Li(tiron). The surrounding tiron anions coordinating to sodium or lithium in Na(tiron) and Li(tiron), respectively, result in a three-dimensional network held together by the coordinate bonds to the alkali metal cations. The formation of such a three-dimensional network for tiron salts is relatively rare and has not been observed with monovalent cations. Finally, (NH)(tiron) exhibits extensive hydrogen-bonding arrays between NH and the surrounding tiron anions and inter-stitial water mol-ecules. This series of structures may be valuable for understanding charge transfer in a putative solid-state fuel cell utilizing tiron.
报道了4,5-二羟基苯-1,3-二磺酸盐(钛铁试剂)二价阴离子的钠、锂和铵盐的固态结构,即4,5-二羟基苯-1,3-二磺酸钠盐(2Na·CHOS)、μ-4,5-二羟基苯-1,3-二磺酸根双[水合锂(I)]半水合物[Li(CHOS)(H₂O)]·0.5H₂O以及4,5-二羟基苯-1,3-二磺酸二铵盐一水合物(2NH₄·CHOS·H₂O)。分子间相互作用随阳离子大小而变化,不对称晶胞以及大分子特征也受到影响。Na(tiron)中的钠通过钛铁试剂上的磺酸根氧和羟基氧供体以及一个间隙水分子在扭曲的八面体环境中配位。锂的离子半径较小,在Li(tiron)中通过磺酸根和酚羟基的O原子以及水在扭曲的四面体环境中配位。分别与Na(tiron)和Li(tiron)中的钠或锂配位的周围钛铁试剂阴离子形成了由与碱金属阳离子的配位键维系的三维网络。这种钛铁试剂盐三维网络的形成相对罕见,单价阳离子尚未观察到这种情况。最后,(NH₄)₂(tiron)在NH₄⁺与周围钛铁试剂阴离子和间隙水分子之间展现出广泛的氢键阵列。这一系列结构对于理解利用钛铁试剂的假定固态燃料电池中的电荷转移可能具有重要价值。