Roxas Jennifer Lising, Monasky Ross Calvin, Roxas Bryan Angelo P, Agellon Al B, Mansoor Asad, Kaper James B, Vedantam Gayatri, Viswanathan V K
School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona.
BIO5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona.
Cell Mol Gastroenterol Hepatol. 2018 Apr 27;6(2):163-180. doi: 10.1016/j.jcmgh.2018.04.007. eCollection 2018.
BACKGROUND & AIMS: The diarrheagenic pathogen, enteropathogenic (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss.
DSG2 abundance and localization was monitored via immunoblotting and immunofluorescence, respectively. Junctional perturbations were visualized by electron microscopy, and cell-cell adhesion was assessed using dispase assays. EspH alanine-scan mutants as well as pharmacologic agents were used to evaluate impacts on desmosomal alterations. EPEC-mediated DSG2 loss, and its impact on bacterial colonization in vivo, was assessed using a murine model.
The secreted virulence protein EspH mediates EPEC-induced DSG2 degradation, and contributes to desmosomal perturbation, loss of cell junction integrity, and barrier disruption in infected IECs. EspH sequesters Rho guanine nucleotide exchange factors and inhibits Rho guanosine triphosphatase signaling; EspH mutants impaired for Rho guanine nucleotide exchange factor interaction failed to inhibit RhoA or deplete DSG2. Cytotoxic necrotizing factor 1, which locks Rho guanosine triphosphatase in the active state, jasplakinolide, a molecule that promotes actin polymerization, and the lysosomal inhibitor bafilomycin A, respectively, rescued infected cells from EPEC-induced DSG2 loss. Wild-type EPEC, but not an -deficient strain, colonizes mouse intestines robustly, widens paracellular junctions, and induces DSG2 re-localization in vivo.
Our studies define the mechanism and consequences of EPEC-induced desmosomal alterations in IECs. These perturbations contribute to the colonization and virulence of EPEC, and likely related pathogens.
致腹泻病原体肠致病性大肠杆菌(EPEC)利用III型分泌系统将效应分子递送至肠上皮细胞(IECs)。在探究EPEC感染的IECs侧膜分离的基础时,我们观察到感染导致桥粒钙黏蛋白桥粒芯糖蛋白-2(DSG2)缺失。我们试图鉴定参与EPEC诱导的DSG2缺失的分子,阐明其机制及后果。
分别通过免疫印迹和免疫荧光监测DSG2的丰度和定位。通过电子显微镜观察连接扰动,使用dispase试验评估细胞间黏附。使用EspH丙氨酸扫描突变体以及药理试剂评估对桥粒改变的影响。使用小鼠模型评估EPEC介导的DSG2缺失及其对体内细菌定植的影响。
分泌的毒力蛋白EspH介导EPEC诱导的DSG2降解,并导致感染的IECs中桥粒扰动、细胞连接完整性丧失和屏障破坏。EspH螯合Rho鸟嘌呤核苷酸交换因子并抑制Rho鸟苷三磷酸酶信号传导;因Rho鸟嘌呤核苷酸交换因子相互作用受损的EspH突变体无法抑制RhoA或耗尽DSG2。细胞毒素坏死因子1(其将Rho鸟苷三磷酸酶锁定在活性状态)、促进肌动蛋白聚合的茉莉酸内酯以及溶酶体抑制剂巴弗洛霉素A分别使感染细胞免受EPEC诱导的DSG2缺失影响。野生型EPEC而非缺陷菌株能在小鼠肠道中大量定植,使细胞旁连接增宽,并在体内诱导DSG2重新定位。
我们的研究确定了EPEC诱导的IECs桥粒改变的机制及后果。这些扰动有助于EPEC及可能相关病原体的定植和毒力。