Suppr超能文献

一步法构建 N、P 共掺杂多孔碳片/CoP 杂化物,增强锂钾存储性能。

One-Step Construction of N,P-Codoped Porous Carbon Sheets/CoP Hybrids with Enhanced Lithium and Potassium Storage.

机构信息

Key Laboratory of the Colloid and Interface Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China.

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.

出版信息

Adv Mater. 2018 Aug;30(35):e1802310. doi: 10.1002/adma.201802310. Epub 2018 Jul 13.

Abstract

Despite the desirable advancement in synthesizing transition-metal phosphides (TMPs)-based hybrid structures, most methods depend on foreign-template-based multistep procedures for tailoring the specific structure. Herein, a self-template and recrystallization-self-assembly strategy for the one-step synthesis of core-shell-like cobalt phosphide (CoP) nanoparticles embedded into nitrogen and phosphorus codoped porous carbon sheets (CoP⊂NPPCS), is first proposed. Relying on the unusual coordination ability of melamine with metal ions and the cooperative hydrogen bonding of melamine and phytic acid to form a 2D network, a self-synthesized single precursor can be attained. Importantly, this approach can be easily expanded to synthesize other TMPs⊂NPPCS. Due to the unique compositional and structural characteristics, these CoP⊂NPPCSs manifest outstanding electrochemical performances as anode materials for both lithium- and potassium-ion batteries. The unusual hybrid architecture, the high specific surface area, and porous features make the CoP⊂NPPCS attractive for other potential applications, such as supercapacitors and electrocatalysis.

摘要

尽管在合成基于过渡金属磷化物(TMP)的杂化结构方面取得了令人满意的进展,但大多数方法都依赖于基于外来模板的多步程序来调整特定的结构。在此,首次提出了一种自模板和重结晶自组装策略,用于一步合成嵌入式氮和磷共掺杂多孔碳片(CoP⊂NPPCS)的核壳状钴磷(CoP)纳米粒子。该策略依赖于三聚氰胺与金属离子的异常配位能力以及三聚氰胺和植酸的协同氢键形成二维网络,从而可以获得自合成的单前体。重要的是,这种方法可以很容易地扩展到合成其他 TMPs⊂NPPCS。由于独特的组成和结构特性,这些 CoP⊂NPPCSs 作为锂离子和钾离子电池的阳极材料表现出优异的电化学性能。这种不寻常的杂化结构、高比表面积和多孔特性使得 CoP⊂NPPCS 很有吸引力,可用于其他潜在应用,如超级电容器和电催化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验