Suppr超能文献

Cholinergic inhibition of follicle-stimulating hormone-induced progestin production by cultured rat granulosa cells.

作者信息

Kasson B G, Hsueh A J

出版信息

Biol Reprod. 1985 Dec;33(5):1158-67. doi: 10.1095/biolreprod33.5.1158.

Abstract

The influence of cholinomimetics on follicle-stimulating hormone (FSH)-induced progestin production was studied in a primary culture of rat granulosa cells. Cells were cultured for 2 days with FSH and delta 4-androstenedione in the presence or absence of increasing concentrations of cholinergic agonists. Although ineffective as stimulators of steroidogenesis by themselves, the three nicotinic receptor-selective agonists lobeline, dimethylphenylpiperazinium iodide (DMPP), and phenyltrimethylammonium iodide (PTMA) inhibited FSH-induced progesterone and 20 alpha-hydroxypregn-4-en-3-one production in dose-dependent fashions. The rank order of inhibitory potencies was lobeline greater than DMPP greater than PTMA with IC50 values of 2 X 10(-6) M, 3 X 10(-5) M, and 3 X 10(-4) M, respectively. In contrast, the muscarinic receptor-selective agonists muscarine and bethanechol failed to inhibit steroid production. The inhibitory effect of lobeline on the time course of FSH-induced induced steroid production indicated an immediate inhibitory action; however, this inhibition was readily reversed upon removal of the drug. Further studies demonstrated that the FSH-stimulated increase in intracellular cAMP levels, as well as progesterone production induced by cholera toxin and forskolin (agents that stimulate cAMP production) and by dibutyryl cAMP (a cAMP analog), were also suppressed by lobeline. The present observations indicate that nicotinic, but not muscarinic, cholinergic agonists inhibit progesterone biosynthesis in cultured granulosa cells and suggest that endogenous acetylcholine may play a modulatory role in ovarian steroidogenesis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验