Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France.
CNRS, LIPHY, F-38000 Grenoble, France.
Phys Rev Lett. 2018 Jun 29;120(26):268102. doi: 10.1103/PhysRevLett.120.268102.
Driven or active suspensions can display fascinating collective behavior, where coherent motions or structures arise on a scale much larger than that of the constituent particles. Here, we report numerical simulations and an analytical model revealing that deformable particles and, in particular, red blood cells (RBCs) assemble into regular patterns in a confined shear flow. The pattern wavelength concurs well with our experimental observations. The order is of a pure hydrodynamic and inertialess origin, and it emerges from a subtle interplay between (i) hydrodynamic repulsion by the bounding walls that drives deformable cells towards the channel midplane and (ii) intercellular hydrodynamic interactions that can be attractive or repulsive depending on cell-cell separation. Various crystal-like structures arise depending on the RBC concentration and confinement. Hardened RBCs in experiments and rigid particles in simulations remain disordered under the same conditions where deformable RBCs form regular patterns, highlighting the intimate link between particle deformability and the emergence of order.
主动或被动悬架可以表现出迷人的集体行为,其中相干运动或结构出现在比组成粒子大得多的尺度上。在这里,我们报告了数值模拟和分析模型,揭示了可变形粒子,特别是红细胞(RBC)在受限剪切流中组装成规则图案。模式波长与我们的实验观察非常吻合。这种有序状态纯粹是由流体动力和无惯性引起的,它源自于(i)边界壁的流体动力排斥作用,使可变形细胞向通道中间平面移动,以及(ii)细胞间的流体动力相互作用,这种相互作用可能是吸引力或排斥力,具体取决于细胞间的分离。根据 RBC 浓度和限制条件,会出现各种类似晶体的结构。在相同条件下,实验中的硬化 RBC 和模拟中的刚性粒子仍然处于无序状态,而可变形 RBC 则形成规则图案,这突出了粒子可变形性和有序状态出现之间的密切联系。