Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA.
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
Phys Rev Lett. 2018 Jun 29;120(26):266401. doi: 10.1103/PhysRevLett.120.266401.
Elementary band representations are the fundamental building blocks of atomic limit band structures. They have the defining property that at partial filling they cannot be both gapped and trivial. Here, we give two examples-one each in a symmorphic and a nonsymmorphic space group-of elementary band representations realized with an energy gap. In doing so, we explicitly construct a counterexample to a claim by Michel and Zak that single-valued elementary band representations in nonsymmorphic space groups with time-reversal symmetry are connected. For each example, we construct a topological invariant to explicitly demonstrate that the valence bands are nontrivial. We discover a new topological invariant: a movable but unremovable Dirac cone in the "Wilson Hamiltonian" and a bent-Z_{2} index.
基本能带表示是原子极限能带结构的基本构建块。它们具有这样的定义性质,即在部分填充时,它们不能同时具有能隙和平凡性。在这里,我们给出了两个例子——一个在对称空间群中,另一个在非对称空间群中——实现了具有能隙的基本能带表示。这样,我们就明确地构造了 Michel 和 Zak 声称的反例,即在具有时间反演对称性的非对称空间群中,单值基本能带表示是相互连接的。对于每个例子,我们构造了一个拓扑不变量来明确证明价带是非平凡的。我们发现了一个新的拓扑不变量:在“Wilson 哈密顿量”中有一个可移动但不可去除的狄拉克锥和一个弯曲的 Z_2 指标。