Suppr超能文献

景观连通性对蔓延扩张区内伯氏疏螺旋体(Borrelia burgdorferi sensu stricto)扩散的影响的证据。

Evidence for an effect of landscape connectivity on Borrelia burgdorferi sensu stricto dispersion in a zone of range expansion.

机构信息

Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada; Groupe de Recherche en Épidémiologie des Zoonoses et Santé Publique, Faculté de médecine vétérinaire, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Québec, J2S 2M2, Canada.

Ludwig Maximilians Universität München, Department for Infectious Diseases and Zoonoses, Munich, Germany; National Reference Centre for Borrelia, Oberschleissheim, Germany; Bavarian Health and Food Safety Authority, Oberschleissheim, Germany.

出版信息

Ticks Tick Borne Dis. 2018 Sep;9(6):1407-1415. doi: 10.1016/j.ttbdis.2018.07.001. Epub 2018 Jul 2.

Abstract

In North America, different strains of the Lyme disease-causing bacterium Borrelia burgdorferi sensu stricto cluster into phylogenetic groups that are associated with different levels of pathogenicity and, for some, specific rodent reservoir hosts. Here we explore whether landscape connectivity, by impacting host dispersal, influences B. burgdorferi s.s. spread patterns. This question is central to modelling spatial patterns of the spread of Lyme disease risk in the zone of northward range-expansion of B. burgdorferi s.s. in southeastern Canada where the study was conducted. We used multi-locus sequence typing (MLST) to characterise B. burgdorferi s.s. in positive ticks collected at 13 sites in southern Quebec, Canada during the early stages of B. burgdorferi s.s. invasion. We used mixed effects logistic regression to investigate whether landscape connectivity (probability of connectivity; PC) affected the probability that samples collected at different sites were of the same strain (MLST sequence type: ST). PC was calculated from a habitat map based on high spatial resolution (15 m) Landsat 8 imagery to identify woodland habitat that are preferred by rodent hosts of B. burgdorferi s.s. There was a significant positive association between the likelihood that two samples were of the same ST and PC, when PC values were grouped into three categories of low, medium and high. When analysing data for individual STs, samples at different sites were significantly more likely to be the same when PC was higher for the rodent-associated ST1. These findings support the hypothesis that dispersion trajectories of B. burgdorferi s.s. in general, and some rodent-associated strains in particular, are at least partly determined by landscape connectivity. This may suggest that dispersion of B. burgdorferi s.s. is more common by terrestrial mammal hosts (which would likely disperse according to landscape connectivity) than by birds, the dispersal of which is likely less constrained by landscape. This study suggests that accounting for landscape connectivity may improve model-based predictions of spatial spread patterns of B. burgdorferi s.s. The findings are consistent with possible past dispersal patterns of B. burgdorferi s.s. as determined by phylogeographic studies.

摘要

在北美,导致莱姆病的伯氏疏螺旋体细菌的不同菌株聚类为进化群,这些进化群与不同的致病性水平相关,对于某些菌株而言,还与特定的啮齿动物宿主相关。在这里,我们探讨了景观连通性是否通过影响宿主扩散而影响伯氏疏螺旋体 s.s. 的传播模式。这个问题是在加拿大东南部伯氏疏螺旋体 s.s. 向北扩展的区域范围内,对莱姆病风险传播的空间模式进行建模的核心问题。在该研究中,我们使用多位点序列分型 (MLST) 来描述在加拿大魁北克南部的 13 个地点采集的在伯氏疏螺旋体 s.s. 入侵早期阶段的阳性蜱中分离的伯氏疏螺旋体 s.s。我们使用混合效应逻辑回归来研究景观连通性(连通概率;PC)是否影响在不同地点采集的样本是否为同一菌株(MLST 序列类型:ST)的概率。PC 是根据高空间分辨率(15 米)Landsat 8 图像的生境图计算得出的,用于识别林地生境,这些生境是伯氏疏螺旋体 s.s. 啮齿动物宿主的首选生境。当将 PC 值分为低、中、高三组时,两个样本属于同一 ST 的可能性与 PC 之间存在显著正相关。当分析单个 ST 的数据时,当与啮齿动物相关的 ST1 的 PC 值较高时,不同地点的样本更有可能是同一 ST。这些发现支持这样一种假设,即伯氏疏螺旋体 s.s. 的传播轨迹通常,特别是某些与啮齿动物相关的菌株,至少部分取决于景观连通性。这可能表明,伯氏疏螺旋体 s.s. 的传播更常见于陆地哺乳动物宿主(这些宿主可能根据景观连通性进行传播),而不是鸟类,鸟类的传播可能较少受到景观的限制。本研究表明,考虑景观连通性可能会提高基于模型的伯氏疏螺旋体 s.s. 空间传播模式的预测。这些发现与通过系统地理学研究确定的伯氏疏螺旋体 s.s. 的可能过去传播模式一致。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验