Suppr超能文献

利用热熔挤出过程中的比机械能预测三元无定形固体分散体的物理稳定性。

Predicting physical stability of ternary amorphous solid dispersions using specific mechanical energy in a hot melt extrusion process.

机构信息

Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., A1920 Austin, TX 78712, USA.

Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, 2409 University Ave., A1920 Austin, TX 78712, USA.

出版信息

Int J Pharm. 2018 Sep 5;548(1):571-585. doi: 10.1016/j.ijpharm.2018.07.029. Epub 2018 Jul 10.

Abstract

This study focuses on the relationship between drug dissolution properties, physical stability against recrystallization, and specific mechanical energy (SME) from a hot melt extrusion (HME) process of ternary amorphous solid dispersions (ASDs) containing indomethacin (IND), HPMC and mesoporous silica (XDP) prepared using different HME screw condition (the number of kneading zones/rotation speed). The screw condition greatly influenced the amorphous characteristics of the processed material and SME values. The higher SME samples demonstrated a larger parachute effect in dissolution test and reduced the rate of recrystallization upon exposure to elevated temperature/humidity conditions, which can be explained from the enhanced miscibility and interactions of IND/HPMC/XDP. The molecular investigation by solid-state NMR (ssNMR) suggested that higher SME input produced better IND/HPMC miscibility and interaction. Interestingly, XDP showed distinct contacts with IND and HPMC in the high-SME samples. The IND-HPMC interaction is not sufficient to maintain a highly mixed ASD at a high drug load without the assistance of XDP. Therefore, SME is a critical parameter for predicting enhanced dissolution and physical stability of IND in ASDs. Moreover, multi-nuclear and multi-dimensional ssNMR provide mechanistic understanding of molecular properties and bring new perspectives for preparation, analysis, and applications of XDP as a pharmaceutical carrier.

摘要

本研究重点关注了三元无定形固体分散体(ASD)中药物溶出特性、抗重结晶物理稳定性以及特定机械能(SME)之间的关系,该 ASD 含有吲哚美辛(IND)、HPMC 和介孔硅(XDP),通过使用不同的热熔挤出(HME)螺杆条件(捏合区数量/转速)制备。螺杆条件对处理材料的无定形特性和 SME 值有很大影响。SME 值较高的样品在溶解试验中表现出更大的降落伞效应,并且在暴露于高温/高湿度条件下减少重结晶的速度,可以从 IND/HPMC/XDP 的增强混合和相互作用来解释。固态 NMR(ssNMR)的分子研究表明,较高的 SME 输入可以产生更好的 IND/HPMC 混合和相互作用。有趣的是,在高 SME 样品中,XDP 与 IND 和 HPMC 显示出明显的接触。如果没有 XDP 的帮助,IND-HPMC 相互作用不足以在高药物负载下维持高度混合的 ASD。因此,SME 是预测 IND 在 ASD 中增强溶解和物理稳定性的关键参数。此外,多核和多维 ssNMR 为分子性质提供了机制理解,并为 XDP 作为药物载体的制备、分析和应用带来了新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验