Suppr超能文献

收集淋巴管的一维数学模型与电液机械收缩模型和瓣膜动力学相结合。

A one-dimensional mathematical model of collecting lymphatics coupled with an electro-fluid-mechanical contraction model and valve dynamics.

机构信息

Department of Mathematics, University of Trento, Trento, Italy.

Laboratory of Applied Mathematics, DICAM, University of Trento, Trento, Italy.

出版信息

Biomech Model Mechanobiol. 2018 Dec;17(6):1687-1714. doi: 10.1007/s10237-018-1050-7. Epub 2018 Jul 14.

Abstract

We propose a one-dimensional model for collecting lymphatics coupled with a novel Electro-Fluid-Mechanical Contraction (EFMC) model for dynamical contractions, based on a modified FitzHugh-Nagumo model for action potentials. The one-dimensional model for a deformable lymphatic vessel is a nonlinear system of hyperbolic Partial Differential Equations (PDEs). The EFMC model combines the electrical activity of lymphangions (action potentials) with fluid-mechanical feedback (circumferential stretch of the lymphatic wall and wall shear stress) and lymphatic vessel wall contractions. The EFMC model is governed by four Ordinary Differential Equations (ODEs) and phenomenologically relies on: (1) environmental calcium influx, (2) stretch-activated calcium influx, and (3) contraction inhibitions induced by wall shear stresses. We carried out a stability analysis of the stationary state of the EFMC model. Contractions turn out to be triggered by the instability of the stationary state. Overall, the EFMC model allows emulating the influence of pressure and wall shear stress on the frequency of contractions observed experimentally. Lymphatic valves are modelled by extending an existing lumped-parameter model for blood vessels. Modern numerical methods are employed for the one-dimensional model (PDEs), for the EFMC model and valve dynamics (ODEs). Adopting the geometrical structure of collecting lymphatics from rat mesentery, we apply the full mathematical model to a carefully selected suite of test problems inspired by experiments. We analysed several indices of a single lymphangion for a wide range of upstream and downstream pressure combinations which included both favourable and adverse pressure gradients. The most influential model parameters were identified by performing two sensitivity analyses for favourable and adverse pressure gradients.

摘要

我们提出了一种用于收集淋巴管的一维模型,并结合了一种新的电-流-力收缩(EFMC)模型用于动态收缩,该模型基于改良的 FitzHugh-Nagumo 动作电位模型。可变形淋巴管的一维模型是一个双曲型偏微分方程(PDEs)的非线性系统。EFMC 模型将淋巴管的电活动(动作电位)与流体力学反馈(淋巴管壁的周向拉伸和壁切应力)和淋巴管壁收缩相结合。EFMC 模型由四个常微分方程(ODEs)控制,并从现象上依赖于:(1)环境钙内流,(2)拉伸激活钙内流,(3)壁切应力诱导的收缩抑制。我们对 EFMC 模型的定态稳定性进行了分析。收缩是由定态的不稳定性引发的。总的来说,EFMC 模型允许模拟压力和壁切应力对实验中观察到的收缩频率的影响。淋巴管瓣膜通过扩展现有的用于血管的集中参数模型来建模。一维模型(PDEs)、EFMC 模型和瓣膜动力学(ODEs)采用现代数值方法。采用大鼠肠系膜收集淋巴管的几何结构,我们将完整的数学模型应用于一系列精心挑选的测试问题,这些问题是受实验启发的。我们分析了在包括有利和不利压力梯度的广泛上游和下游压力组合下,单个淋巴管的几个指标。通过对有利和不利压力梯度进行两次敏感性分析,确定了最具影响力的模型参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验