Khemili Dalila, Valenzuela Carmen, Laraba-Djebari Fatima, Hammoudi-Triki Djelila
Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El Alia, Bab Ezzouar, 16111, Algiers, Algeria.
Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Madrid, Spain.
Eur Biophys J. 2019 Jan;48(1):1-13. doi: 10.1007/s00249-018-1323-1. Epub 2018 Jul 13.
Neurotoxins of scorpion venoms modulate ion channels. Voltage-gated potassium (K) channels regulate the membrane potential and are involved in the activation and proliferation of immune cells. Macrophages are key components of the inflammatory response induced by scorpion venom. The present study was undertaken to investigate the effect of Androctonus australis hector (Aah) venom on K channels in murine resident peritoneal macrophages. The cytotoxicity of the venom was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) -based assay and electrophysiological recordings were performed using the whole-cell patch clamp technique. High doses of Aah venom (50, 125, 250 and 500 µg/ml) significantly decreased cell viability, while concentrations of 0.1-25 µg/ml were not cytotoxic towards peritoneal macrophages. Electrophysiological data revealed a differential block of K current between resting and LPS-activated macrophages. Aah venom significantly reduced K current amplitude by 62.5 ± 4.78% (n = 8, p < 0.05), reduced the use-dependent decay of the current, decreased the degree of inactivation and decelerated the inactivation process of K current in LPS-activated macrophages. Unlike cloned K1.5 channels, Aah venom exerted a similar blocking effect on K1.3 compared to K current in LPS-activated macrophages, along with a hyperpolarizing shift in the voltage dependence of K1.3 inactivation, indicating a direct mechanism of current inhibition by targeting K1.3 subunits. The obtained results, demonstrating that Aah venom differentially targets K channels in macrophages, suggest differential outcomes for their inhibitions, and that further investigations of scorpion venom immunomodulatory potential are required.
蝎毒神经毒素可调节离子通道。电压门控钾(K)通道调节膜电位,并参与免疫细胞的激活和增殖。巨噬细胞是蝎毒诱导的炎症反应的关键组成部分。本研究旨在探讨澳链尾蝎(Aah)毒液对小鼠常驻腹膜巨噬细胞中K通道的影响。使用基于3-(4,5-二甲基噻唑-2-基)-2,5-二苯基四氮唑溴盐(MTT)的检测方法评估毒液的细胞毒性,并使用全细胞膜片钳技术进行电生理记录。高剂量的Aah毒液(50、125、250和500μg/ml)显著降低细胞活力,而0.1-25μg/ml的浓度对腹膜巨噬细胞无细胞毒性。电生理数据显示,静息巨噬细胞和LPS激活的巨噬细胞之间的K电流存在差异阻断。Aah毒液使LPS激活的巨噬细胞中的K电流幅度显著降低62.5±4.78%(n = 8,p < 0.05),降低电流的使用依赖性衰减,降低失活程度,并减缓K电流的失活过程。与克隆的K1.5通道不同,Aah毒液对LPS激活的巨噬细胞中的K电流的阻断作用与对K1.3的作用相似,同时K1.3失活的电压依赖性发生超极化偏移,表明通过靶向K1.3亚基直接抑制电流。所得结果表明,Aah毒液对巨噬细胞中的K通道具有差异靶向作用,提示其抑制作用的不同结果,并且需要进一步研究蝎毒的免疫调节潜力。