Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland.
Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland.
Water Res. 2018 Oct 15;143:539-549. doi: 10.1016/j.watres.2018.07.008. Epub 2018 Jul 4.
Increasing transmembrane pressure (TMP) can compress and increase the hydraulic resistance of membrane biofilms. The purpose of the present study is to evaluate how compression of membrane biofilms occurs and how structural rearrangement can affect hydraulic resistance. Biofilms with heterogeneous and homogeneous physical structures were grown in membrane fouling simulators (MFS) in dead-end mode for 20 days with either (i) a nutrient enriched condition with a nutrient ratio of 100:30:10 (C: N: P), (ii) a phosphorus limitation (C: N: P ratio: 100:30:0), or (iii) river water (C: N: P ratio: ca. 100:10:1). The structural and hydraulic response of membrane biofilms to (a) changes in transmembrane pressures (0.06-0.1-0.5-0.1-0.06 bar) and (b) changes in permeate flux (10-15-20-15-10 L/m/h) were investigated. Optical coherence tomography (OCT) was used to monitor biofilm structural response, and OCT images were processed to quantify changes in the mean biofilm thickness and relative roughness. Nutrient enriched and river water biofilms had heterogeneous physical structures with greater surface roughness (Ra' > 0.2) than homogeneous P limiting biofilms (Ra' < 0.2). Compression of biofilms with rough heterogeneous structures (Ra' > 0.2) was irreversible, indicated by irreversible decrease in surface roughness, partial relaxation in mean biofilm thickness and irreversible increase in hydraulic resistance. Compression of homogeneous biofilm (Ra' < 0.2) was on the other hand reversible, indicated by full relaxation of the biofilms structure and restoration of initial hydraulic resistance. Hydraulic response (i.e., change in the specific biofilm resistance) did not correspond with the change in physical structure of heterogeneous biofilms. The presented study provides a fundamental understanding of how biofilm physical structure can affect the biofilm's response to a change in TMP, with practical relevance for the operation of GDM filtration systems.
增加跨膜压力 (TMP) 会压缩并增加膜生物膜的水力阻力。本研究的目的是评估膜生物膜的压缩如何发生以及结构重排如何影响水力阻力。使用死端模式在膜污染模拟器 (MFS) 中培养具有异质和同质物理结构的生物膜 20 天,条件分别为:(i) 营养丰富,营养比为 100:30:10 (C:N:P),(ii) 磷限制 (C:N:P 比:100:30:0),或 (iii) 河水 (C:N:P 比:约 100:10:1)。研究了膜生物膜对 (a) 跨膜压力变化 (0.06-0.1-0.5-0.1-0.06 bar) 和 (b) 渗透通量变化 (10-15-20-15-10 L/m/h) 的结构和水力响应。使用光学相干断层扫描 (OCT) 监测生物膜结构响应,并对 OCT 图像进行处理以量化生物膜平均厚度和相对粗糙度的变化。营养丰富和河水生物膜具有异质物理结构,表面粗糙度 (Ra' > 0.2) 大于同质磷限制生物膜 (Ra' < 0.2)。表面粗糙度不可逆降低、平均生物膜厚度部分松弛和水力阻力不可逆增加,表明具有粗糙异质结构的生物膜 (Ra' > 0.2) 的压缩是不可逆的。另一方面,同质生物膜 (Ra' < 0.2) 的压缩是可逆的,表明生物膜结构完全松弛并恢复初始水力阻力。水力响应(即特定生物膜阻力的变化)与异质生物膜物理结构的变化不对应。本研究提供了对生物膜物理结构如何影响生物膜对 TMP 变化的响应的基本理解,对 GDM 过滤系统的运行具有实际意义。