Department of Civil and Structural Engineering, University of Sheffield, Sheffield, UK; (At Present) School of Water, Energy and Environment, Cranfield University, Cranfield, UK.
Institute of Environmental Engineering, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland; Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
Water Res. 2018 Oct 15;143:561-569. doi: 10.1016/j.watres.2018.06.022. Epub 2018 Jun 12.
Exponential wash-off models are the most widely used method to predict sediment wash-off from urban surfaces. In spite of many studies, there is still a lack of knowledge on the effect of external drivers such as rainfall intensity and surface slope on wash-off predictions. In this study, a more physically realistic "structure" is added to the original exponential wash-off model (OEM) by replacing the invariant parameters with functions of rainfall intensity and catchment surface slope, so that the model can better represent catchment and rainfall conditions without the need for lookup tables and interpolation/extrapolation. In the proposed new exponential model (NEM), two such functions are introduced. One function describes the maximum fraction of the initial load that can be washed off by a rainfall event for a given slope and the other function describes the wash-off rate during a rainfall event for a given slope. The parameters of these functions are estimated using data collected from a series of laboratory experiments carried out using an artificial rainfall generator, a 1 m bituminous road surface and a continuous wash-off measuring system. These experimental data contain high temporal resolution measurements of wash-off fractions for combinations of five rainfall intensities ranging from 33 to 155 mm/h and three catchment slopes ranging from 2 to 8%. Bayesian inference, which allows the incorporation of prior knowledge, is implemented to estimate parameter values. Explicitly accounting for model bias and measurement errors, a likelihood function representative of the wash-off process is formulated, and the uncertainty in the prediction of the NEM is quantified. The results of this study show: 1) even when the OEM is calibrated for every experimental condition, the NEM's performance, with parameter values defined by functions, is comparable to the OEM. 2) Verification indices for estimates of uncertainty associated with the NEM suggest that the error model used in this study is able to capture the uncertainty well.
指数冲刷模型是预测城市表面泥沙冲刷的最广泛使用的方法。尽管已经进行了许多研究,但对于降雨强度和地表坡度等外部驱动因素对冲刷预测的影响,仍然缺乏了解。在这项研究中,通过用降雨强度和集水区表面坡度的函数替换不变参数,为原始指数冲刷模型(OEM)添加了一个更符合物理现实的“结构”,使得模型能够更好地代表集水区和降雨条件,而无需使用查找表和插值/外推。在所提出的新指数模型(NEM)中,引入了两个这样的函数。一个函数描述了给定坡度下一次降雨事件中可以冲刷掉的初始负荷的最大分数,另一个函数描述了给定坡度下一次降雨事件中的冲刷速率。这些函数的参数是使用一系列实验室实验中收集的数据来估计的,这些实验使用人工降雨发生器、1 米沥青路面和连续冲刷测量系统进行。这些实验数据包含了冲刷分数的高时间分辨率测量值,这些分数是在五个降雨强度(范围从 33 到 155 毫米/小时)和三个集水区坡度(范围从 2 到 8%)的组合下进行的。贝叶斯推理,它允许纳入先验知识,用于估计参数值。明确考虑到模型偏差和测量误差,制定了一个代表冲刷过程的似然函数,并量化了 NEM 预测的不确定性。这项研究的结果表明:1)即使 OEM 针对每个实验条件进行了校准,NEM 的性能(使用函数定义的参数值)也可以与 OEM 相媲美。2)与 NEM 相关的不确定性估计的验证指标表明,本研究中使用的误差模型能够很好地捕捉不确定性。