Kim Taekyun, Kim Dae San, Dolgy Dmitry V, Park Jin-Woo
1Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin, China.
2Department of Mathematics, Kwangwoon University, Seoul, Republic of Korea.
J Inequal Appl. 2018;2018(1):148. doi: 10.1186/s13660-018-1744-5. Epub 2018 Jun 27.
In this paper, we consider sums of finite products of Chebyshev polynomials of the second kind and of Fibonacci polynomials and derive Fourier series expansions of functions associated with them. From these Fourier series expansions, we can express those sums of finite products in terms of Bernoulli polynomials and obtain some identities by using those expressions.
在本文中,我们考虑第二类切比雪夫多项式与斐波那契多项式的有限乘积之和,并推导与之相关的函数的傅里叶级数展开式。从这些傅里叶级数展开式中,我们可以用伯努利多项式来表示那些有限乘积之和,并利用这些表达式得到一些恒等式。