Suppr超能文献

用于求解向量优化问题的惯性前后向方法。

Inertial forward-backward methods for solving vector optimization problems.

作者信息

Boţ Radu Ioan, Grad Sorin-Mihai

机构信息

Faculty of Mathematics, University of Vienna, Vienna, Austria.

Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania.

出版信息

Optimization. 2018 Feb 20;67(7):959-974. doi: 10.1080/02331934.2018.1440553. eCollection 2018.

Abstract

We propose two forward-backward proximal point type algorithms with inertial/memory effects for determining weakly efficient solutions to a vector optimization problem consisting in vector-minimizing with respect to a given closed convex pointed cone the sum of a proper cone-convex vector function with a cone-convex differentiable one, both mapping from a Hilbert space to a Banach one. Inexact versions of the algorithms, more suitable for implementation, are provided as well, while as a byproduct one can also derive a forward-backward method for solving the mentioned problem. Numerical experiments with the proposed methods are carried out in the context of solving a portfolio optimization problem.

摘要

我们提出了两种具有惯性/记忆效应的前向后向近端点型算法,用于确定向量优化问题的弱有效解,该向量优化问题是在给定的闭凸尖锥下,对一个真锥凸向量函数与一个锥凸可微函数之和进行向量最小化,这两个函数均从希尔伯特空间映射到巴拿赫空间。还给出了算法的不精确版本,更适合于实现,同时作为副产品,还可以推导出一种用于解决上述问题的前向后向方法。在所提出的方法的背景下,针对一个投资组合优化问题进行了数值实验。

相似文献

1
Inertial forward-backward methods for solving vector optimization problems.用于求解向量优化问题的惯性前后向方法。
Optimization. 2018 Feb 20;67(7):959-974. doi: 10.1080/02331934.2018.1440553. eCollection 2018.
7
Proximal-gradient algorithms for fractional programming.分数规划的近端梯度算法。
Optimization. 2017 Aug 3;66(8):1383-1396. doi: 10.1080/02331934.2017.1294592. Epub 2017 Feb 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验