Department of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Nanoscale. 2018 Aug 7;10(29):14220-14229. doi: 10.1039/c8nr02669f. Epub 2018 Jul 16.
We have demonstrated a facile and low-cost approach for the fabrication of binary "island" shaped arrays (BISA) with high-density hot spots as reproducible surface-enhanced Raman scattering (SERS) substrates by depositing a self-assembled monolayer Au nanoparticle (AuNP) film with small gaps onto a two-dimensional (2D) silica microsphere opal structure. By varying the size of silica spheres, the SERS performance of the BISA substrate with an enhancement factor (EF) of 3.74 × 10 magnitude and the corresponding signal intensity deviation of below 8% using 770 nm silica sphere arrays were achieved. Compared with the assembled monolayer AuNP film on a planar substrate, the BISA enabled the installation of more AuNPs as a source of hot spots due to the undulation of morphology on the nanoscale within the designated laser-illumination area. In addition, a finite-difference time-domain (FDTD) simulation suggested that the BISA structure provided geometric conditions for increasing the intensity of the formed hot spots, and the strong periodic electric fields on the BISA are located not only in the gap between adjacent AuNPs, but also along the boundary of the neighboring island of silica spheres. Surface plasmon-decayed hot carriers (hot electrons and hot holes) from AuNPs can be applied in the field of energy conversion (i.e., photocatalysis), integrated with the SERS as a sensitive optical indicator to accurately monitor the catalytic reaction process. Furthermore, we examined the catalytic reaction process of the dimerization of 4-ATP into DMAB and found that photocatalytic activity could be tuned by changing the size of silica spheres. This study provides a new design route for the fabrication of the SERS platform with high sensitivity and reproducibility to detect molecules or improve catalyst efficiency.
我们展示了一种简便且低成本的方法,通过在二维(2D)二氧化硅微球蛋白石结构上沉积具有小间隙的自组装金纳米粒子(AuNP)薄膜,制备具有高密度热点的二元“岛”形阵列(BISA),作为可重复的表面增强拉曼散射(SERS)基底。通过改变二氧化硅球的尺寸,使用 770nm 二氧化硅球阵列实现了 BISA 基底的 SERS 性能,其增强因子(EF)为 3.74×10^6,相应的信号强度偏差低于 8%。与在平面基底上组装的单层 AuNP 薄膜相比,由于在指定的激光照射区域内纳米尺度上的形貌波动,BISA 允许安装更多的 AuNP 作为热点源。此外,有限差分时域(FDTD)模拟表明,BISA 结构为增加形成热点的强度提供了几何条件,并且 BISA 上的强周期性电场不仅位于相邻 AuNP 之间的间隙中,而且位于相邻二氧化硅球岛的边界上。来自 AuNP 的表面等离子体衰减热载流子(热电子和热空穴)可应用于能量转换(即光催化)领域,与 SERS 结合作为灵敏的光学指示剂,准确监测催化反应过程。此外,我们研究了 4-ATP 二聚化为 DMAB 的催化反应过程,并发现通过改变二氧化硅球的尺寸可以调节光催化活性。这项研究为制备具有高灵敏度和可重复性的 SERS 平台提供了新的设计途径,以检测分子或提高催化剂效率。