Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, 142290, Russia; Pushchino State Institute of Natural Sciences, Pushchino, Moscow Region, 142290, Russia.
Institute of Cell Biophysics RAS, Pushchino, Moscow Region, 142290, Russia.
Arch Biochem Biophys. 2018 Sep 15;654:70-76. doi: 10.1016/j.abb.2018.07.006. Epub 2018 Jul 20.
In this study, we examined the effects of uridine on plasma cytokine levels, heat shock protein (HSP) 72 expression, and nuclear factor (NF)-κB signaling in spleen lymphocytes after exposure of male BALB/c mice to Escherichia coli lipopolysaccharide (LPS). Mice were treated with uridine (30 mg/kg body weight, intraperitoneal injection [i.p.]) or saline solution of LPS (2.5 mg/kg, i. p.). Endotoxin increased plasma levels of tumor necrosis factor-α, interferon-γ, interleukin (IL)-1, IL-2, and IL-6 by 2.1-, 1.9-, 1.7-, 1.6-, and 2.3-fold, respectively. Prior treatment with uridine prevented LPS-induced increases in all studied cytokines. In splenic lymphocytes, LPS treatment increased the expression of HSP 72 by 2.4-fold, whereas preliminary treatment with uridine completely prevented this effect. LPS also activated NF-κB signaling in splenic lymphocytes, and uridine decreased NF-κB pathway activity. Inhibitory analysis showed that the mechanism of uridine action was associated with the formation of the UDP-metabolic activator of the mitochondrial ATP-dependent potassium channel (mitoK) and the UTP-activator of glycogen synthesis in the tissues. A specific inhibitor of mitoK, 5-hydroxydecanoate (5 mg/kg), and an inhibitor of glycogen synthesis, galactosamine (110 mg/kg), prevented the effects of uridine. Thus, uridine itself or uridine phosphates, which increased after uridine treatment, appeared to inhibit pro-inflammatory responses induced by LPS application. Overall, these findings demonstrated that the mechanisms mediating the effects of uridine were regulated by activation of glycogen synthesis and opening of the mitoK, which in turn increased the energy potential of the cell and reduced oxidative stress.
在这项研究中,我们研究了尿苷对雄性 BALB/c 小鼠暴露于大肠杆菌脂多糖(LPS)后血浆细胞因子水平、热休克蛋白(HSP)72 表达和核因子(NF)-κB 信号的影响。小鼠用尿苷(30mg/kg 体重,腹腔注射[i.p.])或 LPS(2.5mg/kg,i.p.)生理盐水溶液处理。内毒素使肿瘤坏死因子-α、干扰素-γ、白细胞介素(IL)-1、IL-2 和 IL-6 的血浆水平分别增加了 2.1、1.9、1.7、1.6 和 2.3 倍。预先用尿苷处理可防止 LPS 诱导的所有研究细胞因子的增加。在脾淋巴细胞中,LPS 处理使 HSP 72 的表达增加了 2.4 倍,而预先用尿苷处理完全阻止了这种作用。LPS 还激活了脾淋巴细胞中的 NF-κB 信号通路,而尿苷降低了 NF-κB 通路的活性。抑制分析表明,尿苷的作用机制与形成线粒体 ATP 依赖性钾通道(mitoK)的 UDP 代谢激活剂和组织中糖原合成的 UTP 激活剂有关。mitoK 的特异性抑制剂 5-羟基癸酸(5mg/kg)和糖原合成抑制剂半乳糖胺(110mg/kg)阻止了尿苷的作用。因此,尿苷本身或尿苷磷酸,在尿苷处理后增加,似乎抑制了 LPS 应用引起的促炎反应。总的来说,这些发现表明,介导尿苷作用的机制受到糖原合成的激活和 mitoK 的开放调节,这反过来又增加了细胞的能量潜力并减少了氧化应激。