Division of Cardiology and Cardiac Rehabilitation, Istituti Clinici Scientifici Maugeri SPA SB, I.R.C.C.S, Institute of Cassano Murge, Bari, Italy.
Division of Cardiology and Cardiac Rehabilitation, Istituti Clinici Scientifici Maugeri SPA SB, I.R.C.C.S, Institute of Cassano Murge, Bari, Italy.
J Clin Epidemiol. 2018 Nov;103:31-39. doi: 10.1016/j.jclinepi.2018.07.006. Epub 2018 Jul 27.
The Kaplan-Meier method may overestimate absolute mortality risk (AMR) in the presence of competing risks. Urgent heart transplantation (UHT) and ventricular assist device implantation (VADi) are important competing events in heart failure. We sought to quantify the extent of bias of the Kaplan-Meier method in estimating AMR in the presence of competing events and to analyze the effect of covariates on the hazard for death and competing events in the clinical model of decompensated chronic heart failure with reduced ejection fraction (DCHFrEF).
We studied 683 patients. We used the cumulative incidence function (CIF) to estimate the AMR at 1 year. CIF estimate was compared with the Kaplan-Meier estimate. The Fine-Gray subdistribution hazard analysis was used to assess the effect of covariates on the hazard for death and UHT/VADi.
The Kaplan-Meier estimate of the AMR was 0.272, whereas the CIF estimate was 0.246. The difference was more pronounced in the patient subgroup with advanced DCHF (0.424 vs. 0.338). The Fine-Gray subdistribution hazard analysis revealed that established risk markers have qualitatively different effects on the incidence of death or UHT/VADi.
Competing risks analysis allows more accurately estimating AMR and better understanding the association between covariates and major outcomes in DCHFrEF.
在存在竞争风险的情况下,Kaplan-Meier 法可能会高估绝对死亡率(AMR)。紧急心脏移植(UHT)和心室辅助装置植入(VADi)是心力衰竭的重要竞争事件。我们旨在量化竞争事件存在时 Kaplan-Meier 法估计 AMR 的偏倚程度,并分析协变量对射血分数降低的失代偿性慢性心力衰竭(DCHFrEF)临床模型中死亡和竞争事件的风险的影响。
我们研究了 683 名患者。我们使用累积发生率函数(CIF)来估计 1 年的 AMR。比较 CIF 估计与 Kaplan-Meier 估计。Fine-Gray 亚分布风险分析用于评估协变量对死亡和 UHT/VADi 风险的影响。
AMR 的 Kaplan-Meier 估计值为 0.272,而 CIF 估计值为 0.246。在晚期 DCHF 患者亚组中,差异更为明显(0.424 与 0.338)。Fine-Gray 亚分布风险分析显示,已确立的风险标志物对死亡或 UHT/VADi 的发生率具有定性不同的影响。
竞争风险分析可以更准确地估计 AMR,并更好地理解 DCHFrEF 中协变量与主要结局之间的关联。