Hernandez-Vazquez Jesus-Maria, Garitaonandia Iker, Fernandes María Helena, Muñoa Jokin, Lacalle Luis Norberto López de
Department of Mechanical Engineering, Faculty of Engineering, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo 1, E-48013 Bilbao, Spain.
IK4-IDEKO, Arriaga Kalea 2, E-20870 Elgoibar, Spain.
Materials (Basel). 2018 Jul 16;11(7):1220. doi: 10.3390/ma11071220.
Accurate finite element models of mechanical systems are fundamental resources to perform structural analyses at the design stage. However, uncertainties in material properties, boundary conditions, or connections give rise to discrepancies between the real and predicted dynamic characteristics. Therefore, it is necessary to improve these models in order to achieve a better fit. This paper presents a systematic three-step procedure to update the finite element (FE) models of machine tools with numerous uncertainties in connections, which integrates statistical, numerical, and experimental techniques. The first step is the gradual application of fractional factorial designs, followed by an analysis of the variance to determine the significant variables that affect each dynamic response. Then, quadratic response surface meta-models, including only significant terms, which relate the design parameters to the modal responses are obtained. Finally, the values of the updated design variables are identified using the previous regression equations and experimental modal data. This work demonstrates that the integrated procedure gives rise to FE models whose dynamic responses closely agree with the experimental measurements, despite the large number of uncertainties, and at an acceptable computational cost.
机械系统的精确有限元模型是在设计阶段进行结构分析的基础资源。然而,材料特性、边界条件或连接中的不确定性会导致实际动态特性与预测动态特性之间存在差异。因此,有必要改进这些模型以实现更好的拟合。本文提出了一种系统的三步程序,用于更新连接中存在大量不确定性的机床有限元(FE)模型,该程序整合了统计、数值和实验技术。第一步是逐步应用分数析因设计,然后进行方差分析以确定影响每个动态响应的显著变量。接着,获得仅包含将设计参数与模态响应相关联的显著项的二次响应面元模型。最后,使用先前的回归方程和实验模态数据确定更新后的设计变量值。这项工作表明,尽管存在大量不确定性,但该集成程序能够生成动态响应与实验测量值紧密吻合的有限元模型,且计算成本可接受。