Suppr超能文献

三步红外光谱和红外显微光谱成像增强对鱼糜中鱼骨的化学和空间识别。

Enhanced chemical and spatial recognition of fish bones in surimi by Tri-step infrared spectroscopy and infrared microspectroscopic imaging.

机构信息

College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China.

Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2018 Dec 5;205:186-192. doi: 10.1016/j.saa.2018.07.031. Epub 2018 Jul 12.

Abstract

Surimi is an intermediate product with an increasing popularity worldwide. Discrimination of impurities like fish bones in surimi has become an urgent issue owing to the food safety and the improved requirements for assessment methods in identification of surimi quality and grades. A Tri-step infrared spectroscopy, including Fourier transform infrared spectroscopy (FT-IR), second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR) has been applied to integrally discriminate different contents (1%-8%) of fish bones in surimi at macro-scale. Meanwhile, attenuated total reflection infrared spectroscopy (ATR-IR) microspectroscopic imaging has been employed to recognize and identify the location of fish bones (less than 1.0 mm in size) in micro-scale. Fishbone characteristic infrared absorption peak at 1011 cm contributes to surimi peaks at 1045 cm and 988 cm confirmed by calculation of their peak heights and ratios of peak areas in original spectra. SD-IR spectra enhance the difference in range of 1440-500 cm, and specifically peak intensity at 599 cm is significantly increased in surimi with 3%-8% fish bones. Moreover, 2DCOS-IR spectra reveal that surimi containing fish bones have increased intensity of auto-peaks at 525 cm, 519 cm, 512 cm and 505 cm mainly contributed by hydroxyapatite and collagen. In ATR-IR microspectroscopic images, a clear fishbone shape (800 × 200 μm) corresponding to its visible image is clearly observed in principal component (PC) score image, which is confirmed as a fish bone by corresponding pixel spectra. Furthermore, the single-wavenumber image shows the spatial chemical distribution of various components for both the fish bone and surimi. Consequently, fish bones can be integrally recognized by physical and chemical imaging manners. It has been demonstrated that the developed Tri-step infrared spectroscopy and ATR-IR microspectroscopic imaging could be applicable for rapidly recognizing impurities and adulterants in surimi.

摘要

鱼糜是一种在全球范围内越来越受欢迎的中间产品。由于食品安全以及对鱼糜质量和等级鉴定方法评估的要求提高,对鱼糜中诸如鱼骨等杂质的鉴别已成为当务之急。本文采用三步红外光谱法(包括傅里叶变换红外光谱(FT-IR)、二阶导数红外光谱(SD-IR)和二维相关红外光谱(2DCOS-IR)),在宏观尺度上整体鉴别不同含量(1%-8%)的鱼骨在鱼糜中的存在。同时,采用衰减全反射红外光谱(ATR-IR)微光谱成像技术,在微观尺度上识别和定位小于 1.0mm 大小的鱼骨。鱼骨特征红外吸收峰在 1011cm-1处,对鱼糜在 1045cm-1和 988cm-1处的峰贡献可通过原始光谱中峰高和峰面积比的计算来确认。SD-IR 光谱增强了 1440-500cm-1范围内的差异,特别是在含有 3%-8%鱼骨的鱼糜中,599cm-1处的峰强度显著增加。此外,2DCOS-IR 光谱表明,含有鱼骨的鱼糜中羟磷灰石和胶原蛋白主要贡献的 525cm-1、519cm-1、512cm-1 和 505cm-1处的自峰强度增加。在 ATR-IR 微光谱图像中,在主成分(PC)得分图像中可以清楚地观察到与可见图像相对应的鱼骨形状(800×200μm),通过对应像素的光谱证实其为鱼骨。此外,单波数图像显示了鱼骨和鱼糜中各种成分的空间化学分布。因此,可以通过物理和化学成像方式整体识别鱼骨。研究表明,所开发的三步红外光谱和 ATR-IR 微光谱成像技术可用于快速识别鱼糜中的杂质和掺杂物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验