Suppr超能文献

CsPbCl 驱动的低陷阱密度钙钛矿晶粒生长实现太阳能电池效率超过 20%

CsPbCl-Driven Low-Trap-Density Perovskite Grain Growth for >20% Solar Cell Efficiency.

作者信息

Jiang Jiexuan, Jin Zhiwen, Gao Fei, Sun Jie, Wang Qian, Liu Shengzhong Frank

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education Shaanxi Key Laboratory for Advanced Energy Devices Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science & Engineering Shaanxi Normal University Xi'an 710119 P. R. China.

Dalian National Laboratory for Clean Energy iChEM, Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 P. R. China.

出版信息

Adv Sci (Weinh). 2018 May 16;5(7):1800474. doi: 10.1002/advs.201800474. eCollection 2018 Jul.

Abstract

Charge recombination in grain boundaries is a significant loss mechanism for perovskite (PVK) solar cells. Here, a new strategy is demonstrated to effectively passivate trap states at the grain boundaries. By introducing a thin layer of CsPbCl coating before the PVK deposition, a passivating layer of PbI is formed at the grain boundaries. It is found that at elevated temperature, Cl ions in the CsPbCl may migrate into the PVK via grain boundaries, reacting with MA to form volatile MACl and leaving a surface layer of PbI at the grain boundary. Further study confirms that there is indeed a small amount of PbI distributed throughout the grain boundaries, resulting in increased photoluminescence intensity, increased carrier lifetime, and decreased trap state density. It is also found that the process passivates only grain surfaces, with no observable effect on the morphology of the PVK thin film. Upon optimization, the obtained PVK-film-based solar cell delivers a high efficiency of 20.09% with reduced hysteresis and excellent stability.

摘要

晶界中的电荷复合是钙钛矿(PVK)太阳能电池的一种重要损耗机制。在此,展示了一种新策略,可有效钝化晶界处的陷阱态。通过在PVK沉积之前引入一层薄的CsPbCl涂层,在晶界处形成了PbI钝化层。研究发现,在高温下,CsPbCl中的Cl离子可能通过晶界迁移到PVK中,与MA反应形成挥发性的MACl,并在晶界处留下PbI表面层。进一步研究证实,确实有少量PbI分布在整个晶界中,导致光致发光强度增加、载流子寿命增加以及陷阱态密度降低。还发现该过程仅钝化晶粒表面,对PVK薄膜的形貌没有可观察到的影响。经过优化,所获得的基于PVK薄膜的太阳能电池具有20.09%的高效率,滞后现象减少且稳定性优异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验