Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68588, USA.
Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC, 27599, USA.
Nat Commun. 2017 Dec 1;8(1):1890. doi: 10.1038/s41467-017-02039-5.
The efficiency of perovskite solar cells has surged in the past few years, while the bandgaps of current perovskite materials for record efficiencies are much larger than the optimal value, which makes the efficiency far lower than the Shockley-Queisser efficiency limit. Here we show that utilizing the below-bandgap absorption of perovskite single crystals can narrow down their effective optical bandgap without changing the composition. Thin methylammonium lead triiodide single crystals with tuned thickness of tens of micrometers are directly grown on hole-transport-layer covered substrates by a hydrophobic interface confined lateral crystal growth method. The spectral response of the methylammonium lead triiodide single crystal solar cells is extended to 820 nm, 20 nm broader than the corresponding polycrystalline thin-film solar cells. The open-circuit voltage and fill factor are not sacrificed, resulting in an efficiency of 17.8% for single crystal perovskite solar cells.
在过去的几年中,钙钛矿太阳能电池的效率有了显著提高,而目前用于创纪录效率的钙钛矿材料的带隙远大于最佳值,这使得效率远低于肖克利-奎塞尔效率极限。在这里,我们表明利用钙钛矿单晶的带隙下吸收可以在不改变组成的情况下缩小其有效光学带隙。通过疏水性界面限制的横向晶体生长方法,直接在空穴传输层覆盖的衬底上生长具有几十微米可调厚度的甲基碘化铅单晶体。甲基碘化铅单晶太阳能电池的光谱响应扩展到 820nm,比相应的多晶薄膜太阳能电池宽 20nm。开路电压和填充因子没有受到影响,从而使单晶钙钛矿太阳能电池的效率达到 17.8%。