Suppr超能文献

基于分布式压缩感知的双通道 SAR 系统地面动目标指示。

Distributed Compressed Sensing Based Ground Moving Target Indication for Dual-Channel SAR System.

机构信息

Ministry of Education Key Laboratory of Intelligent and Network Security, School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.

出版信息

Sensors (Basel). 2018 Jul 21;18(7):2377. doi: 10.3390/s18072377.

Abstract

The dual-channel synthetic aperture radar (SAR) system is widely applied in the field of ground moving-target indication (GMTI). With the increase of the imaging resolution, the resulting substantial raw data samples increase the transmission and storage burden. We tackle the problem by adopting the joint sparsity model 1 (JSM-1) in distributed compressed sensing (DCS) to exploit the correlation between the two channels of the dual-channel SAR system. We propose a novel algorithm, namely the hierarchical variational Bayesian based distributed compressed sensing (HVB-DCS) algorithm for the JSM-1 model, which decouples the common component from the innovation components by applying variational Bayesian approximation. Using the proposed HVB-DCS algorithm in the dual-channel SAR based GMTI (SAR-GMTI) system, we can jointly reconstruct the dual-channel signals, and simultaneously detect the moving targets and stationary clutter, which enables sampling at a further lower rate in azimuth as well as improves the reconstruction accuracy. The simulation and experimental results show that the proposed HVB-DCS algorithm is capable of detecting multiple moving targets while suppressing the clutter at a much lower data rate in azimuth compared with the compressed sensing (CS) and range-Doppler (RD) algorithms.

摘要

双通道合成孔径雷达(SAR)系统广泛应用于地面动目标指示(GMTI)领域。随着成像分辨率的提高,产生的大量原始数据样本增加了传输和存储的负担。我们通过采用分布式压缩感知(DCS)中的联合稀疏模型 1(JSM-1)来解决这个问题,以利用双通道 SAR 系统的两个通道之间的相关性。我们提出了一种新的算法,即基于分层变分贝叶斯的分布式压缩感知(HVB-DCS)算法,用于 JSM-1 模型,通过变分贝叶斯逼近将公共分量与创新分量分离。在双通道 SAR 基于 GMTI(SAR-GMTI)系统中使用所提出的 HVB-DCS 算法,可以联合重建双通道信号,并同时检测运动目标和静止杂波,从而在方位上以更低的速率进行采样,并提高重建精度。仿真和实验结果表明,与压缩感知(CS)和距离-多普勒(RD)算法相比,所提出的 HVB-DCS 算法能够在方位上以更低的数据速率检测到多个运动目标,同时抑制杂波。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e582/6069218/8b47e76bb26b/sensors-18-02377-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验