Perchikov Nathan, Gendelman O V
Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel.
Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
Philos Trans A Math Phys Eng Sci. 2018 Aug 28;376(2127). doi: 10.1098/rsta.2017.0131.
We consider a system of two linear and linearly coupled oscillators with ideal impact constraints. Primary resonant energy exchange is investigated by analysis of the slow flow using the action-angle (AA) formalism. Exact inversion of the action-energy dependence for the linear oscillator with impact constraints is not possible. This difficulty, typical for many models of nonlinear oscillators, is circumvented by matching the asymptotic expansions for the linear and impact limits. The obtained energy-action relation enables the complete analysis of the slow flow and the accurate description of the critical delocalization transition. The transition from the localization regime to the energy-exchange regime is captured by prediction of the critical coupling value. Accurate prediction of the delocalization transition requires a detailed account of the coupling energy with appropriate redefinition and optimization of the limiting phase trajectory on the resonant manifold.This article is part of the theme issue 'Nonlinear energy transfer in dynamical and acoustical systems'.
我们考虑一个具有理想冲击约束的两个线性且线性耦合的振子系统。通过使用作用角(AA)形式对慢流进行分析来研究主共振能量交换。对于具有冲击约束的线性振子,作用 - 能量依赖关系的精确反演是不可能的。这种困难在许多非线性振子模型中很典型,通过匹配线性和冲击极限的渐近展开来规避。所得到的能量 - 作用关系能够对慢流进行完整分析,并准确描述临界离域转变。通过预测临界耦合值来捕捉从局域化状态到能量交换状态的转变。准确预测离域转变需要详细考虑耦合能量,并在共振流形上对极限相位轨迹进行适当的重新定义和优化。本文是主题为“动态和声学系统中的非线性能量转移”的一部分。