Suppr超能文献

用于领导者跟随一致性的分布式线性二次调节器最优协议

Distributed LQR Optimal Protocol for Leader-Following Consensus.

作者信息

Sun Hui, Liu Yungang, Li Fengzhong, Niu Xinglong

出版信息

IEEE Trans Cybern. 2019 Sep;49(9):3532-3546. doi: 10.1109/TCYB.2018.2850760. Epub 2018 Jul 23.

Abstract

This paper addresses the linear quadratic regulator optimal leader-following consensus for multiagent systems in a single-integrator form. Substantially different from the existing related works, the cost function, a global one, and the topology structure are both pregiven, and the optimal protocol to be sought is distributed (which merely depends on relative state information). This violates the optimal protocol design based on the algebraic Riccati equation, although a centralized protocol can be derived. To solve the problem, a novel design strategy of distributed optimal protocol is proposed for the multiagent systems over the digraph of a directed tree. Specifically, the dynamics of the consensus error is explicitly obtained, by which an online-implementable algorithm is given to achieve the parameterization of the cost function. Namely, the completely explicit formula with respect to the gain parameters of all agents is derived for the cost function. Based on this, the existence of optimal gain parameters is rigorously proven, which means the existence of the desired distributed optimal protocol. Furthermore, the optimal gain parameters are derived by minimizing the explicit formula. Two simulation examples are provided to illustrate the effectiveness of the theoretical results.

摘要

本文研究单积分器形式多智能体系统的线性二次调节器最优领导者跟随一致性问题。与现有相关工作有很大不同,成本函数(一个全局函数)和拓扑结构均为预先给定,且要寻找的最优协议是分布式的(仅依赖于相对状态信息)。这与基于代数黎卡提方程的最优协议设计相悖,尽管可以推导出一个集中式协议。为解决该问题,针对有向树图上的多智能体系统,提出一种新颖的分布式最优协议设计策略。具体而言,明确得到了一致性误差的动态方程,据此给出一种可在线实现的算法来实现成本函数的参数化。即,推导出了关于所有智能体增益参数的完全显式公式用于成本函数。基于此,严格证明了最优增益参数的存在性,这意味着所需分布式最优协议的存在性。此外,通过最小化显式公式来推导最优增益参数。提供了两个仿真例子来说明理论结果的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验