Suppr超能文献

径向欠采样方案对心脏 DTI 中压缩感知的影响。

The Influence of Radial Undersampling Schemes on Compressed Sensing in Cardiac DTI.

机构信息

College of Mechanical and Electrical Engineering, Northeast Forestry University, Haerbin 150040, Heilongjiang, China.

University Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621 Lyon, France.

出版信息

Sensors (Basel). 2018 Jul 23;18(7):2388. doi: 10.3390/s18072388.

Abstract

Diffusion tensor imaging (DTI) is known to suffer from long acquisition time, which greatly limits its practical and clinical use. Undersampling of k-space data provides an effective way to reduce the amount of data to acquire while maintaining image quality. Radial undersampling is one of the most popular non-Cartesian k-space sampling schemes, since it has relatively lower sensitivity to motion than Cartesian trajectories, and artifacts from linear reconstruction are more noise-like. Therefore, radial imaging is a promising strategy of undersampling to accelerate acquisitions. The purpose of this study is to investigate various radial sampling schemes as well as reconstructions using compressed sensing (CS). In particular, we propose two randomly perturbed radial undersampling schemes: golden-angle and random angle. The proposed methods are compared with existing radial undersampling methods, including uniformity-angle, randomly perturbed uniformity-angle, golden-angle, and random angle. The results on both simulated and real human cardiac diffusion weighted (DW) images show that, for the same amount of k-space data, randomly sampling around a random radial line results in better reconstruction quality for DTI indices, such as fractional anisotropy (FA), mean diffusivities (MD), and that the randomly perturbed golden-angle undersampling yields the best results for cardiac CS-DTI image reconstruction.

摘要

扩散张量成像(DTI)的采集时间通常较长,这在很大程度上限制了其实际应用和临床应用。对 k 空间数据进行欠采样提供了一种有效减少采集数据量而保持图像质量的方法。径向欠采样是最流行的非笛卡尔 k 空间采样方案之一,因为它相对于笛卡尔轨迹对运动的敏感性较低,并且来自线性重建的伪影更类似于噪声。因此,径向成像是一种很有前途的欠采样加速采集的策略。本研究旨在研究各种径向采样方案以及使用压缩感知(CS)进行重建。特别地,我们提出了两种随机扰动的径向欠采样方案:黄金角和随机角。所提出的方法与现有的径向欠采样方法进行了比较,包括均匀角、随机扰动均匀角、黄金角和随机角。在模拟和真实人体心脏扩散加权(DW)图像上的结果表明,对于相同数量的 k 空间数据,在随机径向线上进行随机采样可以获得更好的 DTI 指数重建质量,例如分数各向异性(FA)、平均扩散度(MD),并且随机扰动的黄金角欠采样对心脏 CS-DTI 图像重建的效果最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89a5/6069122/a81a9127bbdd/sensors-18-02388-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验