Department of Biomedical Engineering, School of Materials Science and Engineering , South China University of Technology , Guangzhou 510641 , PR China.
Department of Mechanical Engineering , University of Washington , Seattle 98195 , Washington , United States.
Langmuir. 2018 Aug 21;34(33):9847-9855. doi: 10.1021/acs.langmuir.8b01937. Epub 2018 Aug 8.
The orientation and conformation of adhesive proteins after adsorption play a central role in cell-binding bioactivity. Fibronectin (Fn) holds two peptide sequences that favor cell adhesion: the Arg-Gly-Asp (RGD) loop on the tenth type-III domain (Fn-III) and the Pro-His-Ser-Arg-Asn (PHSRN) synergy site on the ninth type-III domain (Fn-III). Herein, adsorption of Fn fragments (Fn-III and Fn-III) on self-assembled monolayers (SAMs) carrying various functional groups (-COOH, -NH, -CH, and -OH) was investigated by the Monte Carlo method and molecular dynamics simulation in order to understand its mediation effect on cell adhesion. The results demonstrated that Fn-III could enhance the stiffness of the Fn molecule and further fix the adsorption orientation. The RGD site of the Fn fragment appeared to be deactivated on hydrophobic surfaces (CH-SAM) because of the binding of adjacent nonpolar residues on surfaces, whereas charged surfaces (COOH-SAM and NH-SAM) and hydrophilic surfaces (OH-SAM) were conducive to the formation of cell-binding-favorable orientation for Fn fragments. The cell adhesion capability of Fn fragments was highly improved on positively charged surfaces (NH-SAM) and hydrophilic surfaces because of the advantageous steric structure and orientation of both RGD and PHSRN sites. This work provides an insight into the interplay at the atomic scale between protein adsorption and surface chemistry for designing biologically responsive substrate surfaces.
黏附蛋白在吸附后的取向和构象在细胞结合生物活性中起着核心作用。纤连蛋白(Fn)含有两个有利于细胞黏附的肽序列:第十型三结构域(Fn-III)上的精氨酸-甘氨酸-天冬氨酸(RGD)环和第九型三结构域(Fn-III)上的脯氨酸-组氨酸-丝氨酸-精氨酸-天冬酰胺(PHSRN)协同位点。在此,通过蒙特卡罗方法和分子动力学模拟研究了携带各种官能团(-COOH、-NH、-CH 和-OH)的自组装单层(SAM)上 Fn 片段(Fn-III 和 Fn-III)的吸附,以了解其对细胞黏附的介导作用。结果表明,Fn-III 可以增强 Fn 分子的刚性,并进一步固定吸附取向。Fn 片段的 RGD 位点似乎在疏水性表面(CH-SAM)上失活,因为表面上相邻的非极性残基的结合,而带电荷的表面(COOH-SAM 和 NH-SAM)和亲水表面(OH-SAM)有利于 Fn 片段形成有利于细胞结合的取向。由于 RGD 和 PHSRN 位点的有利空间结构和取向,Fn 片段在带正电荷的表面(NH-SAM)和亲水表面上的细胞黏附能力得到了极大的提高。这项工作深入了解了蛋白质吸附与表面化学之间在原子尺度上的相互作用,为设计对生物有响应的基底表面提供了思路。