Department of Genetics, University of Saarland (UdS), Campus, 66123, Saarbrücken, Germany.
Department of Biology and Center for Integrated Protein Science, Ludwig-Maximilians-University (LMU), 82152, Munich, Germany.
Epigenetics Chromatin. 2018 Jul 25;11(1):41. doi: 10.1186/s13072-018-0211-3.
Epigenome-wide association studies (EWAS) based on human brain samples allow a deep and direct understanding of epigenetic dysregulation in Alzheimer's disease (AD). However, strong variation of cell-type proportions across brain tissue samples represents a significant source of data noise. Here, we report the first EWAS based on sorted neuronal and non-neuronal (mostly glia) nuclei from postmortem human brain tissues.
We show that cell sorting strongly enhances the robust detection of disease-related DNA methylation changes even in a relatively small cohort. We identify numerous genes with cell-type-specific methylation signatures and document differential methylation dynamics associated with aging specifically in neurons such as CLU, SYNJ2 and NCOR2 or in glia RAI1,CXXC5 and INPP5A. Further, we found neuron or glia-specific associations with AD Braak stage progression at genes such as MCF2L, ANK1, MAP2, LRRC8B, STK32C and S100B. A comparison of our study with previous tissue-based EWAS validates multiple AD-associated DNA methylation signals and additionally specifies their origin to neuron, e.g., HOXA3 or glia (ANK1). In a meta-analysis, we reveal two novel previously unrecognized methylation changes at the key AD risk genes APP and ADAM17.
Our data highlight the complex interplay between disease, age and cell-type-specific methylation changes in AD risk genes thus offering new perspectives for the validation and interpretation of large EWAS results.
基于人类大脑样本的表观基因组全基因组关联研究 (EWAS) 可以深入直接地了解阿尔茨海默病 (AD) 中的表观遗传失调。然而,脑组织样本中细胞类型比例的强烈变化是数据噪声的主要来源。在这里,我们报告了基于死后人类脑组织中分选的神经元和非神经元(主要是神经胶质)核的首个 EWAS。
我们表明,即使在相对较小的队列中,细胞分选也能强烈增强对疾病相关 DNA 甲基化变化的稳健检测。我们确定了许多具有细胞类型特异性甲基化特征的基因,并记录了与衰老相关的差异甲基化动态,这些动态与神经元(如 CLU、SYNJ2 和 NCOR2)或神经胶质(如 RAI1、CXXC5 和 INPP5A)特异性相关。此外,我们发现了 MCF2L、ANK1、MAP2、LRRC8B、STK32C 和 S100B 等基因与 AD Braak 分期进展的神经元或神经胶质特异性关联。与之前基于组织的 EWAS 的比较验证了多个与 AD 相关的 DNA 甲基化信号,并进一步将其起源指定为神经元,例如 HOXA3 或神经胶质(ANK1)。在荟萃分析中,我们揭示了 APP 和 ADAM17 这两个关键 AD 风险基因中以前未被识别的两个新的甲基化变化。
我们的数据强调了 AD 风险基因中疾病、年龄和细胞类型特异性甲基化变化之间的复杂相互作用,从而为大型 EWAS 结果的验证和解释提供了新的视角。